scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Precipitation of the δ-Ni 3 Nb phase in two nickel base superalloys

TL;DR: In this article, the precipitation of the metastable δ-Ni3Nb phase has been studied in two niobium bearing nickel base superalloys and the morphology and distribution of precipitates have been examined and the crystallographic orientation relationship between the austenite and the δ phases has been determined.
Abstract: The precipitation of the equilibrium δ-Ni3Nb phase has been studied in two niobium bearing nickel base superalloys—INCONEL 718 and INCONEL* 625—both of which are hardenable by the precipitation of the metastableγ″-Ni3Nb phase. The morphology and the distribution of precipitates have been examined and the crystallographic orientation relationship between the austenite and theδ phases has been determined. The nucleation of theδ phase at stacking faults within pre-existing δ" precipitates has been discussed.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the critical size of Ni3Nb precipitates in IN718 to trigger coherency loss using the phase-field approach with available materials parameters from first-principles calculations and from the literature.
Abstract: Precipitate hardening through coherent particles is an important strengthening mechanism in Ni-based IN718 superalloy. The change of coherency state, e.g., loss of coherency, can affect the precipitation kinetics and the efficacy of precipitate hardening. In this work, we predict the critical size of $$ \gamma^{\prime\prime} $$ -Ni3Nb precipitates in IN718 to trigger coherency loss using the phase-field approach with available materials parameters from first-principles calculations and from the literature. The predicted critical size lies within the range of experimentally reported values. The effect of coherency loss on precipitate morphology and kinetics, as well as the aging time to reach this critical size during heat treatment, is also predicted and discussed. These predictions provide guidance in controlling the size of $$ \gamma^{\prime\prime} $$ precipitates and optimizing the strength of IN718 alloys.

44 citations

Journal ArticleDOI
TL;DR: Fractographic analysis of the tensile tested specimens showed that the closure of shrinkage porosity and the partial healing of lack of fusion (LoF) defects were responsible for improved properties.
Abstract: Alloy 718 finds application in gas turbine engine components, such as turbine disks, compressor blades and so forth, due to its excellent mechanical and corrosion properties at elevated temperatures. Electron beam melting (EBM) is a recent addition to the list of additive manufacturing processes and has shown the capability to produce components with unique microstructural features. In this work, Alloy 718 specimens were manufactured using the EBM process with a single batch of virgin plasma atomized powder. One set of as-built specimens was subjected to solution treatment and ageing (STA); another set of as-built specimens was subjected to hot isostatic pressing (HIP), followed by STA (and referred to as HIP+STA). Microstructural analysis of as-built specimens, STA specimens and HIP+STA specimens was carried out using optical microscopy and scanning electron microscopy. Typical columnar microstructure, which is a characteristic of the EBM manufactured alloy, was observed. Hardness evaluation of the as-built, STA and HIP+STA specimens showed that the post-treatments led to an increase in hardness in the range of ~50 HV1. Tensile properties of the three material conditions (as-built, STA and HIP+STA) were evaluated. Post-treatments lead to an increase in the yield strength (YS) and the ultimate tensile strength (UTS). HIP+STA led to improved elongation compared to STA due to the closure of defects but YS and UTS were comparable for the two post-treatment conditions. Fractographic analysis of the tensile tested specimens showed that the closure of shrinkage porosity and the partial healing of lack of fusion (LoF) defects were responsible for improved properties. Fatigue properties were evaluated in both STA and HIP+STA conditions. In addition, three surface conditions were also investigated, namely the ‘raw’ as-built surface, the machined surface with the contour region and the machined surface without the contour region. Machining off the contour region completely together with HIP+STA led to significant improvement in fatigue performance.

43 citations


Cites background from "Precipitation of the δ-Ni 3 Nb phas..."

  • ...At temperatures of ~900 ◦C, direct δ phase precipitation from the FCC γ matrix is also possible [37], which would hinder the precipitation of the primary strengthening phase (γ”)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the microstructures and the cryogenic mechanical properties of electron beam welds between cast and forged Inconel 718 superalloys with a thickness of 10 mm were investigated in comparison with gas tungsten arc (GTA) welds.
Abstract: The microstructures and the cryogenic mechanical properties of electron beam (EB) welds between cast and forged Inconel 718 superalloys with a thickness of 10 mm were investigated in comparison with gas tungsten arc (GTA) welds. EB welding with a heat input lower than 250 J/mm caused the formation of liquation microfissuring in the cast-side heat-affected-zone (HAZ) of the EB welds. HAZ liquation microfissuring appeared to be associated with the constitutional liquation of primary NbC carbides at the grain boundaries. Compared with the GTA welding process, the EB welding produced welds with superior microstructure, exhibiting fine dendritic structure associated with the reduction in size and fraction of the Laves phase due to the rapid cooling rate. This result was responsible for the superior mechanical properties of the EB welds at 77 K (−196 °C). Laves particles in both welds were found to provide the preferential site for the crack initiation and propagation, leading to a significant decrease in the Charpy impact toughness at 77 K (−196 °C). Crack initiation and propagation induced by Charpy impact testing were discussed in terms of the dendrite arm spacing, the Laves size and the dislocation structure ahead of the crack arisen from the fractured Laves phase in the two welds.

43 citations

Journal ArticleDOI
TL;DR: In this paper, a series of experiments were conducted on round tensile specimens made from Inconel 718 nickel based superalloy (IN718) bar to investigate tensile stress relaxation behaviors at elevated temperatures used for aging heat treatments.
Abstract: Designing microstructure of components made from Inconel 718 nickel based superalloy (IN718) with tailored mechanical properties for high temperature applications, require sequential thermo-mechanical processing. This often includes straining and annealing at solution annealing temperature (i.e. ≈ 980 °C) followed by water quenching and subsequent aging heat treatments at lower temperatures. In addition to the microstructure development (i.e. precipitation) the aging heat treatment partially relieve the residual stresses generated at previous stages of forging and water quenching, however the stress field will not be completely relaxed. In this study, a series of experiments were conducted on round tensile specimens made from IN718 bar to investigate tensile stress relaxation behaviours at elevated temperatures used for aging heat treatments. The stress relaxation curves obtained can be described by a hyperbolic function with a non-zero asymptotic stress (σ ∞ ), which seems to be proportional to the initially applied stress (σ 0 ) for a fixed temperature. This behaviour is investigated at temperatures between 620 °C and 770 °C that is a temperature range used in industry to perform the aging heat treatments to obtain microstructures with tailored mechanical properties. It has been shown that the σ ∞ / σ 0 ratio has decreased rapidly with increasing temperature at this range. The relaxation behaviour has been assessed numerically and an empirical relationship has been defined for each temperature that can be used for modelling purposes.

43 citations

Journal ArticleDOI
Yukui Wang1, Wen-Zhu Shao1, Liang Zhen1, C.L. Yang1, X.M. Zhang1 
TL;DR: In this article, the activation energy for superalloy 718 under hot tensile deformation was determined to be 450.2 kJ/mol, and the existence of a certain amount of undissolved particle-like delta phases played an important role in the elongation behavior.

41 citations

References
More filters
Book
01 Jan 1958
TL;DR: The Handbook of Lattice spacings and structures of metals and alloys as discussed by the authors is a handbook of argumentative essay structure spacing and lattice plane model modified by the incorporation of thermodynamic functions appropriate to the f.c.
Abstract: For the best product experience, a Handbook of of argumentative essay structure spacing Lattice Spacings and Structures of Metals and Alloys ScienceDirect. Get this from a library! A handbook of lattice spacings and structures of metals and alloys. (W B Pearson) Acm metal). Vol. lattice plane model modified by the incorporation of thermodynamic functions appropriate to the f.c.c. Al—Ag solid zones in the alloys. W. B. Pearson, Handbook of Lattice Spacings. Structures of Metals and Alloys.

3,090 citations

Book
01 Jan 1962
TL;DR: Modern Physical Metallurgy as mentioned in this paper describes the fundamental principles of physical metallurgy and the basic techniques for assessing microstructure and provides a balanced coverage of properties, characterization, phase transformations, crystal structure, and corrosion not available in other texts.
Abstract: Modern Physical Metallurgy describes, in a very readable form, the fundamental principles of physical metallurgy and the basic techniques for assessing microstructure This book enables you to understand the properties and applications of metals and alloys at a deeper level than that provided in an introductory materials course The eighth edition of this classic text has been updated to provide a balanced coverage of properties, characterization, phase transformations, crystal structure, and corrosion not available in other texts, and includes updated illustrations along with extensive new real-world examples and homework problems It offers renowned coverage of metals and alloys from one of the world's leading metallurgy educators It covers new materials characterization techniques, including scanning tunneling microscopy (STM), atomic force microscopy (AFM), and nanoindentation It provides the most thorough coverage of characterization, mechanical properties, surface engineering and corrosion of any textbook in its field It includes new worked examples with real-world applications, case studies, extensive homework exercises, and a full online solutions manual and image bank

421 citations

Book ChapterDOI
TL;DR: In this article, a review of theoretical models applicable to concentrated solid solutions is presented, focusing on concentrated solutions because dilute ones can be considered as special cases and because the interesting effects of clustering and ordering are most apparent at high solute concentrations.
Abstract: Publisher Summary This chapter reviews current theoretical models applicable to concentrated solid solutions. It focuses on concentrated solutions because dilute ones can be considered as special cases and because the interesting effects of clustering and ordering are most apparent at high solute concentrations. The extended ranges of solubility are often found in metallic systems, and for this reason most examples selected will refer to metals and alloys, although the models presented are equally applied to off-stoichiometric compounds, metallic or inorganic, and to amorphous solids. The chapter provides description of the state of the order of the system through suitable averaging procedures. It discusses the internal energy of solutions, from both electronic and elastic standpoints. The chapter presents free energy models, such as generalized Bragg- Williams's model, Landau theory, and cluster variation method. These models are applied to the study of phase equilibrium.

308 citations

Journal ArticleDOI
TL;DR: In this article, a heat treatment for 706 alloy was developed which effectively optimizes the 1200°F stress-rupture properties of the alloy by precipitation of globular to plate-like Ni3Cb/Ni3Ti at the grain boundaries in conjunction with maintaining a fine as-forged grain structure.
Abstract: Evaluation of a commercial heat treatment for 706 alloy indicated that it resulted in relatively low 1200° F stress rupture ductility. It was determined that this was caused by a solution treatment which dissolved all of the age-hardening phases in the alloy and caused a coarse grain size and supersaturated matrix condition. Based upon extensive fine structure study of the 706 alloy as well as previous experience with 718 alloy and other Fe−Ni-base superalloys, a heat treatment is developed which effectively optimizes the 1200°F stress-rupture properties of the alloy. The key to best properties was found to be the precipitation of globular to plate-like Ni3Cb/Ni3Ti at the grain boundaries in conjunction with maintaining a fine as-forged grain structure.

44 citations