scispace - formally typeset
Journal ArticleDOI

Precoding for Full Duplex Multiuser MIMO Systems: Spectral and Energy Efficiency Maximization

Reads0
Chats0
TLDR
Numerical results demonstrate that, compared to a half duplex system, the FD system of interest with the proposed designs achieves a better SE and a slightly smaller EE when the SI is small.
Abstract
We consider data transmissions in a full duplex (FD) multiuser multiple-input multiple-output (MU-MIMO) system, where a base station (BS) bidirectionally communicates with multiple users in the downlink (DL) and uplink (UL) channels on the same system resources. The system model of consideration has been thought to be impractical due to the self-interference (SI) between transmit and receive antennas at the BS. Interestingly, recent advanced techniques in hardware design have demonstrated that the SI can be suppressed to a degree that possibly allows for FD transmission. This paper goes one step further in exploring the potential gains in terms of the spectral efficiency (SE) and energy efficiency (EE) that can be brought by the FD MU-MIMO model. Toward this end, we propose low-complexity designs for maximizing the SE and EE, and evaluate their performance numerically. For the SE maximization problem, we present an iterative design that obtains a locally optimal solution based on a sequential convex approximation method. In this way, the nonconvex precoder design problem is approximated by a convex program at each iteration. Then, we propose a numerical algorithm to solve the resulting convex program based on the alternating and dual decomposition approaches, where analytical expressions for precoders are derived. For the EE maximization problem, using the same method, we first transform it into a concave-convex fractional program, which then can be reformulated as a convex program using the parametric approach. We will show that the resulting problem can be solved similarly to the SE maximization problem. Numerical results demonstrate that, compared to a half duplex system, the FD system of interest with the proposed designs achieves a better SE and a slightly smaller EE when the SI is small.

read more

Citations
More filters
Journal ArticleDOI

A Survey of Energy-Efficient Techniques for 5G Networks and Challenges Ahead

TL;DR: This survey provides an overview of energy-efficient wireless communications, reviews seminal and recent contribution to the state-of-the-art, including the papers published in this special issue, and discusses the most relevant research challenges to be addressed in the future.
Book

Energy Efficiency in Wireless Networks via Fractional Programming Theory

TL;DR: This monograph presents a unified framework for energy efficiency maximization in wireless networks via fractional programming theory, showing how the described framework is general enough to be extended in these directions, proving useful in tackling future challenges that may arise in the design of energy-efficient future wireless networks.
Journal ArticleDOI

A Survey of In-Band Full-Duplex Transmission: From the Perspective of PHY and MAC Layers

TL;DR: This survey covers a wide array of technologies that have been proposed in the literature as feasible for IBFD transmission and evaluates the performance of the IBFD systems compared to conventional half-duplex transmission in connection with theoretical aspects such as the achievable sum rate, network capacity, system reliability, and so on.
Journal ArticleDOI

Robust and Secure Wireless Communications via Intelligent Reflecting Surfaces

TL;DR: In this article, the authors investigated the joint design of the beamformers and AN covariance matrix at the AP and the phase shifters at the RISs for maximization of the system sum-rate while limiting the maximum information leakage to the potential eavesdroppers.
Journal ArticleDOI

Prospective Multiple Antenna Technologies for Beyond 5G

TL;DR: In this article, the authors survey three new multiple antenna technologies that can play key roles in beyond 5G networks: cell-free massive MIMO, beamspace massive mIMO and intelligent reflecting surfaces.
References
More filters
Book

Convex Optimization

TL;DR: In this article, the focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them, and a comprehensive introduction to the subject is given. But the focus of this book is not on the optimization problem itself, but on the problem of finding the appropriate technique to solve it.
Book

Nonlinear Programming

Journal ArticleDOI

Capacity of Multi‐antenna Gaussian Channels

TL;DR: In this paper, the authors investigate the use of multiple transmitting and/or receiving antennas for single user communications over the additive Gaussian channel with and without fading, and derive formulas for the capacities and error exponents of such channels, and describe computational procedures to evaluate such formulas.
Book

Low-Density Parity-Check Codes

TL;DR: A simple but nonoptimum decoding scheme operating directly from the channel a posteriori probabilities is described and the probability of error using this decoder on a binary symmetric channel is shown to decrease at least exponentially with a root of the block length.
Journal ArticleDOI

On Limits of Wireless Communications in a Fading Environment when UsingMultiple Antennas

TL;DR: In this article, the authors examined the performance of using multi-element array (MEA) technology to improve the bit-rate of digital wireless communications and showed that with high probability extraordinary capacity is available.
Related Papers (5)