scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Precursors of solvated electrons in radiobiological physics and chemistry.

22 Jun 2012-Chemical Reviews (Chem Rev)-Vol. 112, Iss: 11, pp 5578-5602
TL;DR: This paper presents a meta-analyses of the chiral stationary phase of the ECSBM using a single chiral Monte Carlo method, developed at the University of California, Berkeley, in 1998 and refined at the behest of the manufacturer.
Abstract: s; Proceeding of IX ECSBM, Prague, Czech Republic, 2001. (176) Abouaf, R.; Pommier, J.; Dunet, H. Int. J. Mass Spectrom. 2003, 226, 397. (177) Denifl, S.; Ptasin ́ska, S.; Cingel, M.; Matejcik, S.; Scheier, P.; Mar̈k, T. D. Chem. Phys. Lett. 2003, 377, 74. (178) Gohlke, S.; Abdoul-Carime, H.; Illenberger, E. Chem. Phys. Lett. 2003, 380, 595. (179) Abdoul-Carime, H.; Gohlke, S.; Illenberger, E. Phys. Rev. Lett. 2004, 92, 168103. (180) Ptasin ́ska, S.; Denifl, S.; Grill, V.; Mar̈k, T. D.; Scheier, P.; Gohlke, S.; Huels, M. A.; Illenberger, E. Angew. Chem., Int. Ed. 2005, 44, 1657. (181) Aflatooni, K.; Gallup, G. A.; Burrow, P. D. J. Phys. Chem. A 1998, 102, 6205. (182) Burrow, P. D.; Gallup, G. A.; Scheer, A. M.; Denifl, S.; Ptasinska, S.; Mar̈k, T. D.; Scheier, P. J. Chem. Phys. 2006, 124, 124310. (183) Aflatooni, K.; Scheer, A. M.; Burrow, P. D. Chem. Phys. Lett. 2005, 408, 426. (184) Naaman, R.; Sanche, L. Chem. Rev. 2007, 107, 1553. (185) Li, X.; Sevilla, M. D.; Sanche, L. J. Phys. Chem. B 2004, 108, 19013. (186) Ptasin ́ska, S.; Denifl, S.; Mroź, B.; Probst, M.; Grill, V.; Illenberger, E.; Scheier, P.; Mar̈k, T. D. J. Chem. Phys. 2005, 123, 124302. (187) Li, Z.; Cloutier, P.; Sanche, L.; Wagner, J. R. J. Phys. Chem. B 2011, 115, 13668. (188) Li, X.; Sevilla, M. D.; Sanche, L. J. Phys. Chem. B 2004, 108, 5472. (189) Ptasin ́ska, S.; Denifl, S.; Scheier, P.; Illenberger, E.; Mar̈k, T. D. Angew. Chem., Int. Ed. 2005, 44, 6941. (190) Zheng, Y.; Cloutier, P.; Hunting, D. J.; Wagner, J. R.; Sanche, L. J. Am. Chem. Soc. 2004, 126, 1002. (191) Huels, M. A.; Parenteau, L.; Michaud, M.; Sanche, L. Phys. Rev. A 1995, 51, 337. (192) Abdoul-Carime, H.; Cloutier, P.; Sanche, L. Radiat. Res. 2001, 155, 625. (193) Baccarelli, I.; Bald, I.; Gianturco, F. A.; Illenberger, E.; Kopyra, J. Phys. Rep. 2011, 508, 1. (194) Ptasin ́ska, S.; Denifl, S.; Scheier, P.; Mar̈k, T. D. J. Chem. Phys. 2004, 120, 8505. (195) Antic, D.; Parenteau, L.; Lepage, M.; Sanche, L. J. Phys. Chem. 1999, 103, 6611. (196) Antic, D.; Parenteau, L.; Sanche, L. J. Phys. Chem. B 2000, 104, 4711. (197) Huels, M. A.; Parenteau, L.; Sanche, L. J. Phys. Chem. B 2004, 108, 16303. (198) Pan, X.; Sanche, L. Chem. Phys. Lett. 2006, 421, 404. (199) Pan, X.; Sanche, L. Phys. Rev. Lett. 2005, 94, 198104. (200) Sulzer, P.; Mauracher, A.; Denifl, S.; Zappa, F.; Ptasin ́ska, S.; Beikircher, M.; Bacher, A.; Wendt, N.; Aleem, A.; Rondino, F.; Matejcik, S.; Probst, M.; Mar̈k, T. D.; Scheier, P. Anal. Chem. 2007, 79, 6585. (201) Gu, J.; Xie, Y.; Schaefer, H. F. Chem.Eur. J. 2010, 16, 5089. (202) Zheng, Y.; Cloutier, P.; Hunting, D. J.; Sanche, L.; Wagner, J. R. J. Am. Chem. Soc. 2005, 127, 16592. (203) Zheng, Y.; Wagner, J. R.; Sanche, L. Phys. Rev. Lett. 2006, 96, 208101. (204) Zheng, Y.; Cloutier, P.; Hunting, D. J.; Wagner, J. R.; Sanche, L. J. Chem. Phys. 2006, 124, 9. (205) Huels, M.; Boudaïffa, B.; Cloutier, P.; Hunting, D. J.; Sanche, L. J. Am. Chem. Soc. 2003, 125, 4467. (206) Boudaïffa, B.; Hunting, D. J.; Cloutier, P.; Huels, M. A.; Sanche, L. Int. J. Radiat. Biol. 2000, 76, 1209. (207) Boudaïffa, B.; Cloutier, P.; Hunting, D. J.; Huels, M. A.; Sanche, L. Med. Sci 2000, 16, 1281. (208) Martin, F.; Burrow, P. D.; Cai, Z.; Cloutier, P.; Hunting, D. J.; Sanche, L. Phys. Rev. Lett. 2004, 93, 068101. (209) Panajotovic, R.; Martin, F.; Cloutier, P.; Hunting, D. J.; Sanche, L. Radiat. Res. 2006, 165, 452. (210) Li, X.; Sevilla, M. D.; Sanche, L. J. Am. Chem. Soc. 2003, 125, 13668. (211) Simons, J. Acc. Chem. Res. 2006, 39, 772. (212) Bao, X.; Wang, J.; Gu, J.; Leszczynski, J. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 5658. (213) Caron, L.; Sanche, L. Phys. Rev. A: At., Mol. Opt. Phys. 2004, 70, 032719. (214) Caron, L. G.; Sanche, L. In Low-energy Electron Scattering from Molecules, Biomolecules and Surfaces; Čaŕsky, P., Čurík, R., Eds.; CRC Press (Taylor and Francis Group): Boca Raton, FL, 2012; pp 161− 230. (215) Lin, S. D. Radiat. Res. 1974, 59, 521. (216) Abdoul-Carime, H.; Sanche, L. Radiat. Res. 2003, 160, 86. (217) Abdoul-Carime, H.; Sanche, L. J. Phys. Chem. B 2004, 108, 457. (218) Abdoul-Carime, H.; Cecchini, S.; Sanche, L. Radiat. Res. 2002, 158, 23. (219) Ptasin ́ska, S.; Denifl, S.; Candor, P.; Matejcik, S.; Scheier, P.; Mar̈k, T. D. Chem. Phys. Lett. 2005, 403, 107. (220) Abdoul-Carime, H.; Gohlke, S.; Illenberger, E. Chem. Phys. Lett. 2005, 402, 497. (221) Gohlke, S.; Rosa, A.; Illenberger, E.; Brüning, F.; Huels, M. A. J. Chem. Phys. 2002, 116, 10164. (222) Ptasin ́ska, S.; Denifl, S.; Abedi, A.; Scheier, P.; Mar̈k, T. D. Anal. Bioanal. Chem. 2003, 377, 1115. (223) Abdoul-Carime, H.; Illenberger, E. Chem. Phys. Lett. 2004, 397, 309. (224) Sulzer, P.; Alizadeh, E.; Mauracher, A.; Scheier, P.; Mar̈k, T. D. Int. J. Mass. Spectrom. 2008, 277, 274. (225) Abdoul-Carime, H.; Gohlke, S.; Illenberger, E. Phys. Chem. Chem. Phys. 2004, 6, 161. (226) Alizadeh, E. Dissociative Electron Attachment to Biomolecules. Ph.D Thesis, University of Innsbruck, Innsbruck, Austria, August 2009. (227) Alizadeh, E.; Gschliesser, D.; Bartl, P.; Edtbauer, A.; Vizcaino, V.; Mauracher, A.; Probst, M.; Mar̈k, T. D.; Ptasin ́ska, S.; Mason, N. J.; Denifl, S.; Scheier, P. J. Chem. Phys. 2011, 134, 054305. (228) Vasil’ev, Y. V.; Figard, B. J.; Barofsky, D. F.; Deinzer, M. L. J. Am. Chem. Soc. 2007, 268, 106. (229) Cloutier, P.; Sicard-Roselli, C.; Escher, E.; Sanche, L. J. Phys. Chem. B 2007, 111, 1620. (230) Ptasin ́ska, S.; Li, Z.; Mason, N. J.; Sanche, L. Phys. Chem. Chem. Phys. 2010, 12, 9367. (231) Wang, J.; Gu, J.; Leszczynski, J. Chem. Phys. Lett. 2007, 442, 124. (232) Ptasin ́ska, S.; Sanche, L. Phys. Rev. E 2007, 75, 031915. (233) Falk, M.; Hartman, K. A.; Lord, R. C. J. Am. Chem. Soc. 1963, 85, 387. (234) Orlando, T. M.; Oh, D.; Chen, Y.; Aleksandrov, A. B. J. Chem. Phys. 2008, 128, 195102. (235) Dumont, A.; Zheng, Y.; Hunting, D.; Sanche, L. J. Chem. Phys. 2010, 132, 045102. (236) Solomun, T.; Skalicky, T. Chem. Phys. Lett. 2008, 453, 101. (237) Lett, J. T.; Alexander, P. Radiat. Res. 1961, 15, 159. Chemical Reviews Review dx.doi.org/10.1021/cr300063r | Chem. Rev. XXXX, XXX, XXX−XXX X (238) Neary, G. J.; Simpson-Gildemeister, V. F. W.; Peacocke, A. R. Int. J. Radiat. Biol. 1970, 18, 25. (239) Hearst, J. E.; Vinogard, J. Proc. Natl. Acad. Sci. U.S.A. 1961, 47, 825. (240) Saenger, W. Principles of Nucleic Acid Structure; SpringerVerlag: New York, NY, 1984. (241) Jeffrey, G.; Saenger, W. Hydration Bonding in Biological Structures; Springer-Verlag: New York, NY, 1991. (242) Tao, N. J.; Lindsay, S. M.; Rupprecht, A. Biopolymers 1989, 28, 1019. (243) Swarts, S.; Sevilla, M. D.; Becker, D.; Tokar, C.; Wheeler, K. Radiat. Res. 1992, 129, 333. (244) Brun, É.; Cloutier, P.; Sicard-Roselli, C.; Fromm, M.; Sanche, L. J. Phys. Chem. B 2009, 113, 10008. (245) Cai, Z.; Cloutier, P.; Hunting, D. J.; Sanche, L. J. Phys. Chem. B 2005, 109, 4796. (246) de Lara, C. M.; Jenner, T. J.; Townsend, K. M. S.; Marsden, S. J.; O’Neill, P. Radiat. Res. 1995, 144, 43. (247) Alizadeh, E.; Cloutier, P.; Hunting, D. J.; Sanche, L. J. Phys. Chem. B 2011, 115, 4796. (248) Samuni, A.; Czapski, G. Radiat. Res. 1978, 76, 624. (249) Roots, R.; Chatterjee, A.; Blakely, E.; Chang, P.; Smith, K.; Tobias, C. Radiat. Res. 1982, 92, 245. (250) Ewing, D.; Walton, H. L.; Guilfoil, D. S.; Ohm, M. B. Int. J. Radiat. Biol. 1991, 59, 717. (251) Alizadeh, E.; Sanche, L. Radiat. Phys. Chem. 2012, 81, 33. (252) Nikjoo, H.; Lindborg, L. Phys. Med. Biol. 2010, 55, R65. (253) Alizadeh, E.; Sanche, L. J. Phys. Chem. B 2011, 115, 14852. (254) Devita Jr, V. T.; Hellman, S.; Resenberg, S. A. Cancer: Principles and Practice of Oncology; Lippincott Williams and Wilkins: New York, NY, 2001. (255) Saif, M. W.; Diaso, R. B. In Chemoradiation in Cancer Therapy; Choy, H., Ed.; Humana Press: Totowa, NJ, 2003; pp 23−44. (256) Jamieson, E. R.; Lippard, S. J. Chem. Rev. 1999, 99, 2467. (257) Lippard, S. J. Pure Appl. Chem. 1987, 59, 731. (258) Zheng, Y.; Hunting, D. J.; Ayotte, P.; Sanche, L. Phys. Rev. Lett. 2008, 100, 198101. (259) Rezaee, M.; Hunting, D. J.; Sanche, L. Results to be published. (260) Rezaee, M.; Alizadeh, E.; Hunting, D. J.; Sanche, L. Bioinorg. Chem. Appl. 2011, 2012, 1. (261) Seiwert, T. Y.; Salama, J. K.; Vokes, E. E. Nat. Clin. Pract. Oncol. 2007, 4, 86. (262) Zimbrick, J. D.; Sukrochana, A.; Richmond, R. C. Int. J. Radiat. Oncol. Biol. Phys. 1979, 5, 1351. (263) Lelieveld, P.; Scoles, M. A.; Brown, J. M.; Kallman, R. F. Int. J. Radiat. Oncol. Biol. Phys. 1985, 11, 111. (264) Sanche, L. Chem. Phys. Lett. 2009, 474, 1 (and references therein). (265) Zheng, Y.; Hunting, D. J.; Ayotte, P.; Sanche, L. Radiat. Res. 2008, 169, 19. (266) Heb́ert, E. M.; debouttier̀e, P. J.; Lepage, M.; Sanche, L.; Hunting, D. J. Int. J. Radiat. Biol. 2010, 86, 692. (267) Herold, D. M.; Das, I. J.; Stobbe, C. C.; Iyer, R. V.; Chapman, J. D. Int. J. Radiat. Biol. 2000, 76, 1357. (268) Whyman, R. Gold Bull. 1996, 29, 11. (269) Chen, W.; Zhang, J. J. Nanosci. Nanotechnol. 2006, 6, 1159. (270) Anshup, A.; Venkataraman, J. S.; Subramaniam, C.; Kumar, R. R.; Priya, S.; Kumar, T. R. S.; Omkumar, R. V.; John, A.; Pradeep, T. Langmuir 2005, 21, 11562. (271) Niidome, T.; Nakashima, K.; Takahashi, H.; Niidome, Y. Chem. Commun. 2004, 17, 1978. (272) Brun, E.; Duchambon, P.; Blouquit, Y.; Keller, G.; Sanche, L.; Sicard-Roselli, C. Radiat. Phys. Chem. 2009, 78, 177. (273) Foley, E. A.; Carter, J. D.; Shan, F.; Guo, T. Chem. Commun. 2005, 25, 3192. (274) Carter, J. D.; Cheng, N. N.; Qu, Y.; Suarez, G. D.; Guo, T. J. Phys. Chem. B 2007, 111, 11622. (275) Butterworth, K. T.; Wyer, J. A.; Brennan-Fournet, M.; Latimer, C. J.; Shah, M. B.; Currell, F. J.; Hirst, D. G. Radiat. Res. 2008, 170, 381. (276) Chang, M.; Shiau, A.; Chen, Y.; Chang, C.; Chen, H.; Wu, C. Cancer Sci. 2008, 99, 1479. (277) Xiao, F.; Zheng, Z.; Cloutier, P.; He, Y.; Hunting, D. J.; Sanche, L. Nanotechnology 2011, 22, 465101. (278) Zheng, Y.; Sanche, L. Radiat. Res. 2009, 172, 114. (279) German, E. D.;
Citations
More filters
Journal ArticleDOI
TL;DR: A review of the state-of-the-art of this multidisciplinary area and identifying the key research challenges is provided in this paper, where the developments in diagnostics, modeling and further extensions of cross section and reaction rate databases are discussed.
Abstract: Plasma–liquid interactions represent a growing interdisciplinary area of research involving plasma science, fluid dynamics, heat and mass transfer, photolysis, multiphase chemistry and aerosol science. This review provides an assessment of the state-of-the-art of this multidisciplinary area and identifies the key research challenges. The developments in diagnostics, modeling and further extensions of cross section and reaction rate databases that are necessary to address these challenges are discussed. The review focusses on non-equilibrium plasmas.

1,078 citations

Journal ArticleDOI
TL;DR: The current understanding of the fundamental mechanisms involved in LEE-induced damage of DNA and complex biomolecule films is summarized and the potential of controlling this damage using molecular and nanoparticle targets with high LEE yields in targeted radiation-based cancer therapies is discussed.
Abstract: Many experimental and theoretical advances have recently allowed the study of direct and indirect effects of low-energy electrons (LEEs) on DNA damage. In an effort to explain how LEEs damage the human genome, researchers have focused efforts on LEE interactions with bacterial plasmids, DNA bases, sugar analogs, phosphate groups, and longer DNA moieties. Here, we summarize the current understanding of the fundamental mechanisms involved in LEE-induced damage of DNA and complex biomolecule films. Results obtained by several laboratories on films prepared and analyzed by different methods and irradiated with different electron-beam current densities and fluencies are presented. Despite varied conditions (e.g., film thicknesses and morphologies, intrinsic water content, substrate interactions, and extrinsic atmospheric compositions), comparisons show a striking resemblance in the types of damage produced and their yield functions. The potential of controlling this damage using molecular and nanoparticle targets with high LEE yields in targeted radiation-based cancer therapies is also discussed.

326 citations


Cites background from "Precursors of solvated electrons in..."

  • ...The emission of SEs from a metal surface exposed to soft X-rays is another source of LEEs, which is extensively described in some review articles (26, 40)....

    [...]

Journal ArticleDOI
TL;DR: A series of new strategies for enhancing NLO response and electronic stability of electride and alkalide molecules are exhibited by using various complexants, which include not only the behaviors of pushed and pulled electron, size, shape, and number of coordination sites of complexants but also the number and spin state of excess electrons in these unusual NLO molecules.
Abstract: The excess electron is a kind of special anion with dispersivity, loosely bounding and with other fascinating features, which plays a pivotal role (promote to about 106 times in (H2O)3{e}) in the large first hyperpolarizabilities (β0) of dipole-bound electron clusters. This discovery opens a new perspective on the design of novel nonlinear optical (NLO) molecular materials for electro-optic device application. Significantly, doping alkali metal atoms in suitable complexants was proposed as an effective approach to obtain electride and alkalide molecules with excess electron and large NLO responses. The first hyperpolarizability is related to the characteristics of complexants and the excess electron binding states. Subsequently, a series of new strategies for enhancing NLO response and electronic stability of electride and alkalide molecules are exhibited by using various complexants. These strategies include not only the behaviors of pushed and pulled electron, size, shape, and number of coordination sit...

173 citations

Journal ArticleDOI
TL;DR: This work provides an overview of what is known in regards to the structure and spectroscopy of the hydrated electron, both in liquid water and in clusters, the latter of which provide model systems for how water networks accommodate an excess electron.
Abstract: Existence of a hydrated electron as a byproduct of water radiolysis was established more than 50 years ago, yet this species continues to attract significant attention due to its role in radiation chemistry, including DNA damage, and because questions persist regarding its detailed structure. This work provides an overview of what is known in regards to the structure and spectroscopy of the hydrated electron, both in liquid water and in clusters [Formula: see text], the latter of which provide model systems for how water networks accommodate an excess electron. In clusters, the existence of both surface-bound and internally bound states of the excess electron has elicited much debate, whereas in bulk water there are questions regarding how best to understand the structure of the excess electron's spin density. The energetics of the equilibrium species e-(aq) and its excited states, in bulk water and at the air/water interface, are also addressed.

137 citations

Journal ArticleDOI
10 Jan 2020-Science
TL;DR: T tunable femtosecond soft x-ray pulses from an x-rays free electron laser are used to reveal the dynamics of the valence hole created by strong-field ionization and to track the primary proton transfer reaction giving rise to the formation of OH.
Abstract: Elementary processes associated with ionization of liquid water provide a framework for understanding radiation-matter interactions in chemistry and biology. Although numerous studies have been conducted on the dynamics of the hydrated electron, its partner arising from ionization of liquid water, H2O+, remains elusive. We used tunable femtosecond soft x-ray pulses from an x-ray free electron laser to reveal the dynamics of the valence hole created by strong-field ionization and to track the primary proton transfer reaction giving rise to the formation of OH. The isolated resonance associated with the valence hole (H2O+/OH) enabled straightforward detection. Molecular dynamics simulations revealed that the x-ray spectra are sensitive to structural dynamics at the ionization site. We found signatures of hydrated-electron dynamics in the x-ray spectrum.

111 citations

References
More filters
Book
01 Jan 1973
TL;DR: Radiobiology for the radiologist, Radiobiology in general, Radiology for radiologists as mentioned in this paper, Radiology in the field of radiology, radiology for radiology.
Abstract: Radiobiology for the radiologist , Radiobiology for the radiologist , کتابخانه دیجیتال جندی شاپور اهواز

4,040 citations

Journal ArticleDOI
03 Mar 2000-Science
TL;DR: It is shown that reactions of such electrons, even at energies well below ionization thresholds, induce substantial yields of single- and double-strand breaks in DNA, which are caused by rapid decays of transient molecular resonances localized on the DNA's basic components.
Abstract: Most of the energy deposited in cells by ionizing radiation is channeled into the production of abundant free secondary electrons with ballistic energies between 1 and 20 electron volts. Here it is shown that reactions of such electrons, even at energies well below ionization thresholds, induce substantial yields of single- and double-strand breaks in DNA, which are caused by rapid decays of transient molecular resonances localized on the DNA's basic components. This finding presents a fundamental challenge to the traditional notion that genotoxic damage by secondary electrons can only occur at energies above the onset of ionization, or upon solvation when they become a slowly reacting chemical species.

1,891 citations

Journal ArticleDOI
TL;DR: In this article, the Bethe theory has been updated with a number of new developments which need to be included in that body of material, such as the ${z}^{3}$ effect and the stopping power for particles at extreme relativistic energies.
Abstract: Since the appearance of the title paper, a number of new developments have occurred which need to be included in that body of material. We present additional remarks and clarifications which supplement and update numerous aspects of the Bethe theory discussed in the earlier paper. We also bring the bibliography up to date. Plasma stopping power, the ${z}^{3}$ effect, and stopping power for particles at extreme relativistic energies are among the new topics included. We make several comments on Fano's earlier review article, Ann. Rev. Nucl. Sci. 13, 1 (1963).

1,233 citations

01 Jan 1972
TL;DR: In this paper, the Bethe theory has been updated with a number of new developments which need to be included in that body of material, such as the ${z}^{3}$ effect and the stopping power for particles at extreme relativistic energies.
Abstract: Since the appearance of the title paper, a number of new developments have occurred which need to be included in that body of material. We present additional remarks and clarifications which supplement and update numerous aspects of the Bethe theory discussed in the earlier paper. We also bring the bibliography up to date. Plasma stopping power, the ${z}^{3}$ effect, and stopping power for particles at extreme relativistic energies are among the new topics included. We make several comments on Fano's earlier review article, Ann. Rev. Nucl. Sci. 13, 1 (1963).

832 citations