scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Predicting coiled coils from protein sequences

24 May 1991-Science (American Association for the Advancement of Science)-Vol. 252, Iss: 5009, pp 1162-1164
TL;DR: This method was used to delineate coiled-coil domains in otherwise globular proteins, such as the leucine zipper domains in transcriptional regulators, and to predict regions of discontinuity within coiled -coil structures,such as the hinge region in myosin.
Abstract: The probability that a residue in a protein is part of a coiled-coil structure was assessed by comparison of its flanking sequences with sequences of known coiled-coil proteins. This method was used to delineate coiled-coil domains in otherwise globular proteins, such as the leucine zipper domains in transcriptional regulators, and to predict regions of discontinuity within coiled-coil structures, such as the hinge region in myosin. More than 200 proteins that probably have coiled-coil domains were identified in GenBank, including alpha- and beta-tubulins, flagellins, G protein beta subunits, some bacterial transfer RNA synthetases, and members of the heat shock protein (Hsp70) family.
Citations
More filters
Journal ArticleDOI
TL;DR: The definition and use of family-specific, manually curated gathering thresholds are explained and some of the features of domains of unknown function (also known as DUFs) are discussed, which constitute a rapidly growing class of families within Pfam.
Abstract: Pfam is a widely used database of protein families and domains. This article describes a set of major updates that we have implemented in the latest release (version 24.0). The most important change is that we now use HMMER3, the latest version of the popular profile hidden Markov model package. This software is approximately 100 times faster than HMMER2 and is more sensitive due to the routine use of the forward algorithm. The move to HMMER3 has necessitated numerous changes to Pfam that are described in detail. Pfam release 24.0 contains 11,912 families, of which a large number have been significantly updated during the past two years. Pfam is available via servers in the UK (http://pfam.sanger.ac.uk/), the USA (http://pfam.janelia.org/) and Sweden (http://pfam.sbc.su.se/).

14,075 citations


Cites methods from "Predicting coiled coils from protei..."

  • ...These predictions are pre-computed over the sequence database by the following third party programs: TMHMM (10) (transmembrane regions), SignalP (11) (signal peptide regions), ncoils ( 12 ) (coiled-coil regions) and SEG (9) (low complexity regions)....

    [...]

Journal ArticleDOI
TL;DR: SMART as discussed by the authors is a web-based tool that allows rapid identification and annotation of signaling domain sequences, which can be used to determine the modular architectures of single sequences or genomes.
Abstract: Accurate multiple alignments of 86 domains that occur in signaling proteins have been constructed and used to provide a Web-based tool (SMART: simple modular architecture research tool) that allows rapid identification and annotation of signaling domain sequences. The majority of signaling proteins are multidomain in character with a considerable variety of domain combinations known. Comparison with established databases showed that 25% of our domain set could not be deduced from SwissProt and 41% could not be annotated by Pfam. SMART is able to determine the modular architectures of single sequences or genomes; application to the entire yeast genome revealed that at least 6.7% of its genes contain one or more signaling domains, approximately 350 greater than previously annotated. The process of constructing SMART predicted (i) novel domain homologues in unexpected locations such as band 4.1-homologous domains in focal adhesion kinases; (ii) previously unknown domain families, including a citron-homology domain; (iii) putative functions of domain families after identification of additional family members, for example, a ubiquitin-binding role for ubiquitin-associated domains (UBA); (iv) cellular roles for proteins, such predicted DEATH domains in netrin receptors further implicating these molecules in axonal guidance; (v) signaling domains in known disease genes such as SPRY domains in both marenostrin/pyrin and Midline 1; (vi) domains in unexpected phylogenetic contexts such as diacylglycerol kinase homologues in yeast and bacteria; and (vii) likely protein misclassifications exemplified by a predicted pleckstrin homology domain in a Candida albicans protein, previously described as an integrin.

3,284 citations

01 Jan 1998
TL;DR: SMART as discussed by the authors is a web-based tool that allows rapid identification and annotation of signaling domain sequences, which can be used to determine the modular architectures of single sequences or genomes.
Abstract: Accurate multiple alignments of 86 domains that occur in signaling proteins have been constructed and used to provide a Web-based tool (SMART: simple modular architecture research tool) that allows rapid identification and annotation of signaling domain sequences. The majority of signaling proteins are multidomain in character with a considerable variety of domain combinations known. Com- parison with established databases showed that 25% of our domain set could not be deduced from SwissProt and 41% could not be annotated by Pfam. SMART is able to determine the modular architectures of single sequences or genomes; application to the entire yeast genome revealed that at least 6.7% of its genes contain one or more signaling domains, approximately 350 greater than previously annotated. The process of constructing SMART predicted (i) novel domain homologues in unexpected locations such as band 4.1- homologous domains in focal adhesion kinases; (ii) previously unknown domain families, including a citron-homology do- main; (iii) putative functions of domain families after identi- fication of additional family members, for example, a ubiq- uitin-binding role for ubiquitin-associated domains (UBA); (iv) cellular roles for proteins, such predicted DEATH do- mains in netrin receptors further implicating these molecules in axonal guidance; (v) signaling domains in known disease genes such as SPRY domains in both marenostrinypyrin and Midline 1; (vi) domains in unexpected phylogenetic contexts such as diacylglycerol kinase homologues in yeast and bacte- ria; and (vii) likely protein misclassifications exemplified by a predicted pleckstrin homology domain in a Candida albicans protein, previously described as an integrin.

3,157 citations

Journal ArticleDOI
24 Sep 1998-Nature
TL;DR: The X-ray crystal structure of a core synaptic fusion complex containing syntaxin-1A, synaptobrevin-II and SNAP-25B reveals a highly twisted and parallel four-helix bundle that differs from the bundles described for the haemagglutinin and HIV/SIV gp41 membrane-fusion proteins.
Abstract: The evolutionarily conserved SNARE proteins and their complexes are involved in the fusion of vesicles with their target membranes; however, the overall organization and structural details of these complexes are unknown. Here we report the X-ray crystal structure at 2.4 A resolution of a core synaptic fusion complex containing syntaxin-1 A, synaptobrevin-II and SNAP-25B. The structure reveals a highly twisted and parallel four-helix bundle that differs from the bundles described for the haemagglutinin and HIV/SIV gp41 membrane-fusion proteins. Conserved leucine-zipper-like layers are found at the centre of the synaptic fusion complex. Embedded within these leucine-zipper layers is an ionic layer consisting of an arginine and three glutamine residues contributed from each of the four alpha-helices. These residues are highly conserved across the entire SNARE family. The regions flanking the leucine-zipper-like layers contain a hydrophobic core similar to that of more general four-helix-bundle proteins. The surface of the synaptic fusion complex is highly grooved and possesses distinct hydrophilic, hydrophobic and charged regions. These characteristics may be important for membrane fusion and for the binding of regulatory factors affecting neurotransmission.

2,381 citations

Journal ArticleDOI
09 Aug 1991-Science
TL;DR: The APC gene was identified in a contig initiated from the MCC gene and was found to encode an unusually large protein, and these two closely spaced genes encode proteins predicted to contain coiled-coil regions, which were also expressed in a wide variety of tissues.
Abstract: Recent studies suggest that one or more genes on chromosome 5q21 are important for the development of colorectal cancers, particularly those associated with familial adenomatous polyposis (FAP). To facilitate the identification of genes from this locus, a portion of the region that is tightly linked to FAP was cloned. Six contiguous stretches of sequence (contigs) containing approximately 5.5 Mb of DNA were isolated. Subclones from these contigs were used to identify and position six genes, all of which were expressed in normal colonic mucosa. Two of these genes (APC and MCC) are likely to contribute to colorectal tumorigenesis. The MCC gene had previously been identified by virtue of its mutation in human colorectal tumors. The APC gene was identified in a contig initiated from the MCC gene and was found to encode an unusually large protein. These two closely spaced genes encode proteins predicted to contain coiled-coil regions. Both genes were also expressed in a wide variety of tissues. Further studies of MCC and APC and their potential interaction should prove useful for understanding colorectal neoplasia.

2,364 citations

References
More filters
Journal ArticleDOI
24 Jun 1988-Science
TL;DR: A 30-amino-acid segment of C/EBP, a newly discovered enhancer binding protein, shares notable sequence similarity with a segment of the cellular Myc transforming protein, and may represent a characteristic property of a new category of DNA binding proteins.
Abstract: A 30-amino-acid segment of C/EBP, a newly discovered enhancer binding protein, shares notable sequence similarity with a segment of the cellular Myc transforming protein. Display of these respective amino acid sequences on an idealized alpha helix revealed a periodic repetition of leucine residues at every seventh position over a distance covering eight helical turns. The periodic array of at least four leucines was also noted in the sequences of the Fos and Jun transforming proteins, as well as that of the yeast gene regulatory protein, GCN4. The polypeptide segments containing these periodic arrays of leucine residues are proposed to exist in an alpha-helical conformation, and the leucine side chains extending from one alpha helix interdigitate with those displayed from a similar alpha helix of a second polypeptide, facilitating dimerization. This hypothetical structure is referred to as the "leucine zipper," and it may represent a characteristic property of a new category of DNA binding proteins.

3,256 citations

Journal ArticleDOI
27 Jan 1989-Science
TL;DR: A peptide corresponding to the leucine zipper region of the yeast transcriptional activator GCN4 was synthesized and characterized and associates in the micromolar concentration range to form a very stable dimer of alpha helices with a parallel orientation.
Abstract: Recently, a hypothetical structure called a leucine zipper was proposed that defines a new class of DNA binding proteins. The common feature of these proteins is a region spanning approximately 30 amino acids that contains a periodic repeat of leucines every seven residues. A peptide corresponding to the leucine zipper region of the yeast transcriptional activator GCN4 was synthesized and characterized. This peptide associates in the micromolar concentration range to form a very stable dimer of alpha helices with a parallel orientation. Although some features of the leucine zipper model are supported by our experimental data, the peptide has the characteristics of a coiled coil.

825 citations

Journal ArticleDOI
09 Dec 1988-Science
TL;DR: The putative DNA-binding domain of CREB is structurally similar to the corresponding domains in the phorbol ester-responsive c-jun protein and the yeast transcription factor GCN4.
Abstract: Cyclic AMP (cAMP) is an intracellular second messenger that activates transcription of many cellular genes. A palindromic consensus DNA sequence, TGACGTCA, functions as a cAMP-responsive transcriptional enhancer (CRE). The CRE binds a cellular protein of 38 kD in placental JEG-3 cells. A placental lambda gt11 library was screened for expression of specific CRE-binding proteins with the CRE sequence as a radioactive probe. A cDNA encoding a protein of 326 amino acids with the binding properties of a specific CRE-binding protein (CREB) was isolated. The protein contains a COOH-terminal basic region adjacent to a sequence similar to the "leucine zipper" sequence believed to be involved in DNA binding and in protein-protein contacts in several other DNA-associated transcriptional proteins including the products of the c-myc, c-fos, and c-jun oncogenes and GCN4. The CREB protein also contains an NH2-terminal acidic region proposed to be a potential transcriptional activation domain. The putative DNA-binding domain of CREB is structurally similar to the corresponding domains in the phorbol ester-responsive c-jun protein and the yeast transcription factor GCN4.

707 citations

Journal ArticleDOI
20 Sep 1990-Nature
TL;DR: The three-dimensional crystal structure of seryl-transfer RNA synthetase from Escherichia coli, refined at 2.5 Å resolution, is described, and is the first representative of a second class of aminoacyl-tRNA synthet enzyme structures.
Abstract: The three-dimensional crystal structure of seryl-transfer RNA synthetase from Escherichia coli, refined at 2.5 A resolution, is described. It has an N-terminal domain that forms an antiparallel α helical coiled-coil, stretching 60 A out into the solvent and stabilized by interhelical hydrophobic interactions and an active-site α – β domain based around a seven-stranded antiparallel β sheet. Unlike the three other known synthetase structures, the enzyme contains no classical nucleotide-binding fold, and is the first representative of a second class of aminoacyl-tRNA synthetase structures.

596 citations