scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model

30 Mar 2020-Computational and structural biotechnology journal (Comput Struct Biotechnol J)-Vol. 18, Iss: 18, pp 784-790
TL;DR: The result showed that atazanavir, an antiretroviral medication used to treat and prevent the human immunodeficiency virus (HIV), is the best chemical compound, showing an inhibitory potency with Kd of 94.94 nM against the SARS-CoV-2 3C-like proteinase.
Abstract: The infection of a novel coronavirus found in Wuhan of China (SARS-CoV-2) is rapidly spreading, and the incidence rate is increasing worldwide. Due to the lack of effective treatment options for SARS-CoV-2, various strategies are being tested in China, including drug repurposing. In this study, we used our pre-trained deep learning-based drug-target interaction model called Molecule Transformer-Drug Target Interaction (MT-DTI) to identify commercially available drugs that could act on viral proteins of SARS-CoV-2. The result showed that atazanavir, an antiretroviral medication used to treat and prevent the human immunodeficiency virus (HIV), is the best chemical compound, showing an inhibitory potency with Kd of 94.94 nM against the SARS-CoV-2 3C-like proteinase, followed by remdesivir (113.13 nM), efavirenz (199.17 nM), ritonavir (204.05 nM), and dolutegravir (336.91 nM). Interestingly, lopinavir, ritonavir, and darunavir are all designed to target viral proteinases. However, in our prediction, they may also bind to the replication complex components of SARS-CoV-2 with an inhibitory potency with Kd
Citations
More filters
Journal ArticleDOI
TL;DR: Current therapeutic options, preventive methods and transmission routes of COVID-19 are discussed and infection prevention, early viral detection and identification of successful treatment protocols provide the best approach in controlling disease spread.

603 citations

Journal ArticleDOI
TL;DR: The ongoing development in AI and ML has significantly improved treatment, medication, screening, prediction, forecasting, contact tracing, and drug/vaccine development process for the Covid-19 pandemic and reduce the human intervention in medical practice.
Abstract: Background and objective During the recent global urgency, scientists, clinicians, and healthcare experts around the globe keep on searching for a new technology to support in tackling the Covid-19 pandemic The evidence of Machine Learning (ML) and Artificial Intelligence (AI) application on the previous epidemic encourage researchers by giving a new angle to fight against the novel Coronavirus outbreak This paper aims to comprehensively review the role of AI and ML as one significant method in the arena of screening, predicting, forecasting, contact tracing, and drug development for SARS-CoV-2 and its related epidemic Method A selective assessment of information on the research article was executed on the databases related to the application of ML and AI technology on Covid-19 Rapid and critical analysis of the three crucial parameters, ie, abstract, methodology, and the conclusion was done to relate to the model's possibilities for tackling the SARS-CoV-2 epidemic Result This paper addresses on recent studies that apply ML and AI technology towards augmenting the researchers on multiple angles It also addresses a few errors and challenges while using such algorithms in real-world problems The paper also discusses suggestions conveying researchers on model design, medical experts, and policymakers in the current situation while tackling the Covid-19 pandemic and ahead Conclusion The ongoing development in AI and ML has significantly improved treatment, medication, screening, prediction, forecasting, contact tracing, and drug/vaccine development process for the Covid-19 pandemic and reduce the human intervention in medical practice However, most of the models are not deployed enough to show their real-world operation, but they are still up to the mark to tackle the SARS-CoV-2 epidemic

539 citations

Journal ArticleDOI
TL;DR: 24 potential antiviral drug candidates against SARS-CoV-2 infection are identified and two FDA-approved drugs—niclosamide and ciclesonide—were notable in some respects.
Abstract: Drug repositioning is the only feasible option to immediately address the COVID-19 global challenge. We screened a panel of 48 FDA-approved drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which were preselected by an assay of SARS-CoV. We identified 24 potential antiviral drug candidates against SARS-CoV-2 infection. Some drug candidates showed very low 50% inhibitory concentrations (IC50s), and in particular, two FDA-approved drugs-niclosamide and ciclesonide-were notable in some respects.

511 citations

Journal ArticleDOI
TL;DR: The available therapies to fight CO VID-19, the development of vaccines, the role of artificial intelligence in the management of the pandemic and limiting the spread of the virus, the impact of the COVID-19 epidemic on the authors' lifestyle, and preparation for a possible second wave are provided.
Abstract: In December 2019, an outbreak of pneumonia of unknown origin was reported in Wuhan, Hubei Province, China. Pneumonia cases were epidemiologically linked to the Huanan Seafood Wholesale Market. Inoculation of respiratory samples into human airway epithelial cells, Vero E6 and Huh7 cell lines, led to the isolation of a novel respiratory virus whose genome analysis showed it to be a novel coronavirus related to SARS-CoV, and therefore named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is a betacoronavirus belonging to the subgenus Sarbecovirus. The global spread of SARS-CoV-2 and the thousands of deaths caused by coronavirus disease (COVID-19) led the World Health Organization to declare a pandemic on 12 March 2020. To date, the world has paid a high toll in this pandemic in terms of human lives lost, economic repercussions and increased poverty. In this review, we provide information regarding the epidemiology, serological and molecular diagnosis, origin of SARS-CoV-2 and its ability to infect human cells, and safety issues. Then we focus on the available therapies to fight COVID-19, the development of vaccines, the role of artificial intelligence in the management of the pandemic and limiting the spread of the virus, the impact of the COVID-19 epidemic on our lifestyle, and preparation for a possible second wave.

494 citations

Journal ArticleDOI
TL;DR: The structure of virus; varying symptoms among COVID-19, SARS, MERS and common flu; the probable mechanism behind the infection and its immune response; and traditional Indian medicinal plants as possible novel therapeutic approaches, exclusively targeting SARS-CoV-2 and its pathways are discussed.

478 citations

References
More filters
Journal ArticleDOI
TL;DR: AutoDock Vina achieves an approximately two orders of magnitude speed‐up compared with the molecular docking software previously developed in the lab, while also significantly improving the accuracy of the binding mode predictions, judging by tests on the training set used in AutoDock 4 development.
Abstract: AutoDock Vina, a new program for molecular docking and virtual screening, is presented. AutoDock Vina achieves an approximately two orders of magnitude speed-up compared with the molecular docking software previously developed in our lab (AutoDock 4), while also significantly improving the accuracy of the binding mode predictions, judging by our tests on the training set used in AutoDock 4 development. Further speed-up is achieved from parallelism, by using multithreading on multicore machines. AutoDock Vina automatically calculates the grid maps and clusters the results in a way transparent to the user.

20,059 citations


"Predicting commercially available a..." refers methods in this paper

  • ...2), which is a molecular docking and virtual screening application [17], was used to predict binding affinities (kcal/mol) between 3C-like proteinase of SARS-CoV-2 and 3,410 FDA-approved drugs....

    [...]

Journal ArticleDOI
TL;DR: AutoDock4 incorporates limited flexibility in the receptor and its utility in analysis of covalently bound ligands is reported, using both a grid‐based docking method and a modification of the flexible sidechain technique.
Abstract: We describe the testing and release of AutoDock4 and the accompanying graphical user interface AutoDockTools. AutoDock4 incorporates limited flexibility in the receptor. Several tests are reported here, including a redocking experiment with 188 diverse ligand-protein complexes and a cross-docking experiment using flexible sidechains in 87 HIV protease complexes. We also report its utility in analysis of covalently bound ligands, using both a grid-based docking method and a modification of the flexible sidechain technique.

15,616 citations

Journal ArticleDOI
TL;DR: There is evidence that human-to-human transmission has occurred among close contacts since the middle of December 2019 and considerable efforts to reduce transmission will be required to control outbreaks if similar dynamics apply elsewhere.
Abstract: Background The initial cases of novel coronavirus (2019-nCoV)–infected pneumonia (NCIP) occurred in Wuhan, Hubei Province, China, in December 2019 and January 2020. We analyzed data on the...

13,101 citations


"Predicting commercially available a..." refers background in this paper

  • ...Unexpectedly, the world is facing the same situation as the previous outbreak due to a recent epidemic of atypical pneumonia (designated as coronavirus disease 2019; COVID-19) caused by a novel coronavirus (severe acute respiratory syndrome coronavirus 2; SARS-CoV-2) in Wuhan, China [5,9]....

    [...]

  • ...Unexpectedly, the world is facing the same situation as the previous outbreak due to a recent epidemic of atypical pneumonia (designated as coronavirus disease 2019; COVID-19) caused by a novel coronavirus (severe acute respiratory syndrome coronavirus 2; SARS-CoV2) in Wuhan, China (5, 9)....

    [...]

Journal ArticleDOI
TL;DR: The implementation of Open Babel is detailed, key advances in the 2.3 release are described, and a variety of uses are outlined both in terms of software products and scientific research, including applications far beyond simple format interconversion.
Abstract: A frequent problem in computational modeling is the interconversion of chemical structures between different formats. While standard interchange formats exist (for example, Chemical Markup Language) and de facto standards have arisen (for example, SMILES format), the need to interconvert formats is a continuing problem due to the multitude of different application areas for chemistry data, differences in the data stored by different formats (0D versus 3D, for example), and competition between software along with a lack of vendor-neutral formats. We discuss, for the first time, Open Babel, an open-source chemical toolbox that speaks the many languages of chemical data. Open Babel version 2.3 interconverts over 110 formats. The need to represent such a wide variety of chemical and molecular data requires a library that implements a wide range of cheminformatics algorithms, from partial charge assignment and aromaticity detection, to bond order perception and canonicalization. We detail the implementation of Open Babel, describe key advances in the 2.3 release, and outline a variety of uses both in terms of software products and scientific research, including applications far beyond simple format interconversion. Open Babel presents a solution to the proliferation of multiple chemical file formats. In addition, it provides a variety of useful utilities from conformer searching and 2D depiction, to filtering, batch conversion, and substructure and similarity searching. For developers, it can be used as a programming library to handle chemical data in areas such as organic chemistry, drug design, materials science, and computational chemistry. It is freely available under an open-source license from http://openbabel.org .

6,040 citations


"Predicting commercially available a..." refers background in this paper

  • ...2) [18] with the following options: --gen3d and -p 7....

    [...]

Journal ArticleDOI
TL;DR: This study evaluated the antiviral efficiency of five FAD-approved drugs including ribavirin, penciclovir, nitazoxanide, nafamostat, chloroquine and two well-known broad-spectrum antiviral drugs remdesivir and favipiravir against a clinical isolate of 2019-nCoV in vitro.
Abstract: Dear Editor, In December 2019, a novel pneumonia caused by a previously unknown pathogen emerged in Wuhan, a city of 11 million people in central China. The initial cases were linked to exposures in a seafood market in Wuhan. As of January 27, 2020, the Chinese authorities reported 2835 confirmed cases in mainland China, including 81 deaths. Additionally, 19 confirmed cases were identified in Hong Kong, Macao and Taiwan, and 39 imported cases were identified in Thailand, Japan, South Korea, United States, Vietnam, Singapore, Nepal, France, Australia and Canada. The pathogen was soon identified as a novel coronavirus (2019-nCoV), which is closely related to sever acute respiratory syndrome CoV (SARS-CoV). Currently, there is no specific treatment against the new virus. Therefore, identifying effective antiviral agents to combat the disease is urgently needed. An efficient approach to drug discovery is to test whether the existing antiviral drugs are effective in treating related viral infections. The 2019-nCoV belongs to Betacoronavirus which also contains SARS-CoV and Middle East respiratory syndrome CoV (MERS-CoV). Several drugs, such as ribavirin, interferon, lopinavir-ritonavir, corticosteroids, have been used in patients with SARS or MERS, although the efficacy of some drugs remains controversial. In this study, we evaluated the antiviral efficiency of five FAD-approved drugs including ribavirin, penciclovir, nitazoxanide, nafamostat, chloroquine and two well-known broad-spectrum antiviral drugs remdesivir (GS5734) and favipiravir (T-705) against a clinical isolate of 2019nCoV in vitro. Standard assays were carried out to measure the effects of these compounds on the cytotoxicity, virus yield and infection rates of 2019-nCoVs. Firstly, the cytotoxicity of the candidate compounds in Vero E6 cells (ATCC-1586) was determined by the CCK8 assay. Then, Vero E6 cells were infected with nCoV2019BetaCoV/Wuhan/WIV04/2019 at a multiplicity of infection (MOI) of 0.05 in the presence of varying concentrations of the test drugs. DMSO was used in the controls. Efficacies were evaluated by quantification of viral copy numbers in the cell supernatant via quantitative real-time RT-PCR (qRT-PCR) and confirmed with visualization of virus nucleoprotein (NP) expression through immunofluorescence microscopy at 48 h post infection (p.i.) (cytopathic effect was not obvious at this time point of infection). Among the seven tested drugs, high concentrations of three nucleoside analogs including ribavirin (half-maximal effective concentration (EC50)= 109.50 μM, halfcytotoxic concentration (CC50) > 400 μM, selectivity index (SI) > 3.65), penciclovir (EC50= 95.96 μM, CC50 > 400 μM, SI > 4.17) and favipiravir (EC50= 61.88 μM, CC50 > 400 μM, SI > 6.46) were required to reduce the viral infection (Fig. 1a and Supplementary information, Fig. S1). However, favipiravir has been shown to be 100% effective in protecting mice against Ebola virus challenge, although its EC50 value in Vero E6 cells was as high as 67 μM, suggesting further in vivo studies are recommended to evaluate this antiviral nucleoside. Nafamostat, a potent inhibitor of MERS-CoV, which prevents membrane fusion, was inhibitive against the 2019-nCoV infection (EC50= 22.50 μM, CC50 > 100 μM, SI > 4.44). Nitazoxanide, a commercial antiprotozoal agent with an antiviral potential against a broad range of viruses including human and animal coronaviruses, inhibited the 2019-nCoV at a low-micromolar concentration (EC50= 2.12 μM; CC50 > 35.53 μM; SI > 16.76). Further in vivo evaluation of this drug against 2019-nCoV infection is recommended. Notably, two compounds remdesivir (EC50= 0.77 μM; CC50 > 100 μM; SI > 129.87) and chloroquine (EC50= 1.13 μM; CC50 > 100 μM, SI > 88.50) potently blocked virus infection at low-micromolar concentration and showed high SI (Fig. 1a, b). Remdesivir has been recently recognized as a promising antiviral drug against a wide array of RNA viruses (including SARS/MERS-CoV) infection in cultured cells, mice and nonhuman primate (NHP) models. It is currently under clinical development for the treatment of Ebola virus infection. Remdesivir is an adenosine analogue, which incorporates into nascent viral RNA chains and results in pre-mature termination. Our time-ofaddition assay showed remdesivir functioned at a stage post virus entry (Fig. 1c, d), which is in agreement with its putative antiviral mechanism as a nucleotide analogue. Warren et al. showed that in NHP model, intravenous administration of 10mg/kg dose of remdesivir resulted in concomitant persistent levels of its active form in the blood (10 μM) and conferred 100% protection against Ebola virus infection. Our data showed that EC90 value of remdesivir against 2019-nCoV in Vero E6 cells was 1.76 μM, suggesting its working concentration is likely to be achieved in NHP. Our preliminary data (Supplementary information, Fig. S2) showed that remdesivir also inhibited virus infection efficiently in a human cell line (human liver cancer Huh-7 cells), which is sensitive to 2019-nCoV. Chloroquine, a widely-used anti-malarial and autoimmune disease drug, has recently been reported as a potential broadspectrum antiviral drug. Chloroquine is known to block virus infection by increasing endosomal pH required for virus/ cell fusion, as well as interfering with the glycosylation of cellular receptors of SARS-CoV. Our time-of-addition assay demonstrated that chloroquine functioned at both entry, and at postentry stages of the 2019-nCoV infection in Vero E6 cells (Fig. 1c, d). Besides its antiviral activity, chloroquine has an immune-modulating activity, which may synergistically enhance its antiviral effect in vivo. Chloroquine is widely distributed in the whole body, including lung, after oral administration. The EC90 value of chloroquine against the 2019-nCoV in Vero

5,660 citations

Related Papers (5)