scispace - formally typeset
Open AccessJournal ArticleDOI

Predicting global atmospheric ice nuclei distributions and their impacts on climate

Reads0
Chats0
TLDR
It is shown that the concentrations of ice nuclei active in mixed-phase cloud conditions can be related to temperature and the number concentrations of particles larger than 0.5 μm in diameter, which reduces unexplained variability in iceuclei concentrations at a given temperature from ∼103 to less than a factor of 10.
Abstract
Knowledge of cloud and precipitation formation processes remains incomplete, yet global precipitation is predominantly produced by clouds containing the ice phase. Ice first forms in clouds warmer than -36 °C on particles termed ice nuclei. We combine observations from field studies over a 14-year period, from a variety of locations around the globe, to show that the concentrations of ice nuclei active in mixed-phase cloud conditions can be related to temperature and the number concentrations of particles larger than 0.5 μm in diameter. This new relationship reduces unexplained variability in ice nuclei concentrations at a given temperature from ∼103 to less than a factor of 10, with the remaining variability apparently due to variations in aerosol chemical composition or other factors. When implemented in a global climate model, the new parameterization strongly alters cloud liquid and ice water distributions compared to the simple, temperature-only parameterizations currently widely used. The revised treatment indicates a global net cloud radiative forcing increase of ∼1 W m-2 for each order of magnitude increase in ice nuclei concentrations, demonstrating the strong sensitivity of climate simulations to assumptions regarding the initiation of cloud glaciation.

read more

Citations
More filters
Journal ArticleDOI

Bounding the role of black carbon in the climate system: A scientific assessment

TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Journal ArticleDOI

The physics of wind-blown sand and dust

TL;DR: The physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices are reviewed.
Journal ArticleDOI

The physics of wind-blown sand and dust

TL;DR: In this article, an extensive review of the physics of wind-blown sand and dust on Earth and Mars is presented, including a review of aeolian saltation, the formation and development of sand dunes and ripples, dust aerosol emission, weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices.
Journal ArticleDOI

Primary biological aerosol particles in the atmosphere: a review

TL;DR: A review of the current knowledge on major categories of primary biological aerosol particles (PBAP): bacteria and archaea, fungal spores and fragments, pollen, viruses, algae and cyanobacteria, biological crusts and lichens and others like plant or animal fragments and detritus is presented in this article.
Journal ArticleDOI

Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments

TL;DR: In this paper, the ice nucleation active surface site (INAS) density is discussed as a simple and empirical normalized measure for ice nucleization activity, and the authors compare the results obtained with different methodologies.
References
More filters

Climate change 2007: the physical science basis

TL;DR: The first volume of the IPCC's Fourth Assessment Report as mentioned in this paper was published in 2007 and covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.
Book

Climate change 2007 : the physical science basis : contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change

Susan Solomon
TL;DR: In this article, the authors present a historical overview of climate change science, including changes in atmospheric constituents and radiative forcing, as well as changes in snow, ice, and frozen ground.
Journal ArticleDOI

Production of secondary ice particles during the riming process

TL;DR: In this paper, the concentrations of ice particles in natural clouds and their ability to predict them from measurements made, for example in laboratory cloud chambers, at the same temperature were investigated, and the results showed that ice crystals play a vital part in the formation of precipitation.
Related Papers (5)