scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Predicting MCI outcome with clinically available MRI and CSF biomarkers

25 Oct 2011-Neurology (American Academy of Neurology)-Vol. 77, Iss: 17, pp 1619-1628
TL;DR: In this paper, the ability of clinically available volumetric MRI (vMRI) and CSF biomarkers, alone or in combination with a quantitative learning measure, to predict conversion to Alzheimer disease (AD) in patients with mild cognitive impairment (MCI).
Abstract: Objective: To determine the ability of clinically available volumetric MRI (vMRI) and CSF biomarkers, alone or in combination with a quantitative learning measure, to predict conversion to Alzheimer disease (AD) in patients with mild cognitive impairment (MCI). Methods: We stratified 192 MCI participants into positive and negative risk groups on the basis of 1) degree of learning impairment on the Rey Auditory Verbal Learning Test; 2) medial temporal atrophy, quantified from Food and Drug Administration–approved software for automated vMRI analysis; and 3) CSF biomarker levels. We also stratified participants based on combinations of risk factors. We computed Cox proportional hazards models, controlling for age, to assess 3-year risk of converting to AD as a function of risk group and used Kaplan-Meier analyses to determine median survival times. Results: When risk factors were examined separately, individuals testing positive showed significantly higher risk of converting to AD than individuals testing negative (hazard ratios [HR] 1.8– 4.1). The joint presence of any 2 risk factors substantially increased risk, with the combination of greater learning impairment and increased atrophy associated with highest risk (HR 29.0): 85% of patients with both risk factors converted to AD within 3 years, vs 5% of those with neither. The presence of medial temporal atrophy was associated with shortest median dementia-free survival (15 months). Conclusions: Incorporating quantitative assessment of learning ability along with vMRI or CSF biomarkers in the clinical workup of MCI can provide critical information on risk of imminent conversion to AD. Neurology ® 2011;77:1619–1628

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This paper aims to demonstrate the efforts towards in-situ applicability of EMMARM, which aims to provide real-time information about the physical properties of materials and their properties as to their mechanical properties.
Abstract: Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen, China, 2 Key Laboratory of Mechanism Theory and Equipment Design, Ministry of Education, Tianjin University, Tianjin, China, 3 School of Biomedical Engineering, Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China, Department of Radiology, and Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, United States, College of Physics and Information

13 citations

Journal ArticleDOI
TL;DR: In adjusted models, memory function, APOE ɛ4 status and age were significant predictors of disease progression, not vaMTA, but in the adjusted model only delayed recall and age was significant predictor.
Abstract: Background/Aims: To evaluate whether visual assessment of medial temporal lobe atrophy (vaMTA) can predict 2-year conversion from mild cognitive impairment (MCI) to dementia and progression of MCI and Alzheimer's disease dementia as measured by the Clinical Dementia Rating Scale Sum of Boxes score (CDR-SB). Methods: vaMTA was performed in 94 patients with MCI according to the Winblad criteria and in 124 patients with AD according to ICD-10 and NINCDS-ADRDA criteria. Demographic data, the Consortium to Establish a Registry for Alzheimer's Disease 10-word delayed recall, APOE ɛ4 status, Cornell Scale for Depression in Dementia, and comorbid hypertension were used as covariates. Results: vaMTA was associated with MCI conversion in an unadjusted model but not in an adjusted model ( p = 0.075), where delayed recall and APOE ɛ4 status were significant predictors. With CDR-SB change as the outcome, an interaction between vaMTA and diagnosis was found, but in the adjusted model only delayed recall and age were significant predictors. For vaMTA below 2, the association between vaMTA and CDR-SB change differed between diagnostic groups. Similar results were found based on a trajectory analysis. Conclusion: In adjusted models, memory function, APOE ɛ4 status and age were significant predictors of disease progression, not vaMTA. The association between vaMTA and CDR-SB change was different in patients with MCI and Alzheimer's disease dementia.

12 citations

Journal ArticleDOI
TL;DR: It is predicted that persistent PTS symptoms across ~24 years would be inversely associated with hippocampal, amygdala, anterior cingulate volumes, and hippocampal occupancy in late middle age, and this work confirmed this prediction.
Abstract: Posttraumatic stress disorder (PTSD) is known to persist, eliciting early medical co-morbidity, and accelerated aging. Although PTSD diagnosis has been found to be associated with smaller volume in multiple brain regions, posttraumatic stress (PTS) symptoms and their associations with brain morphometry are rarely assessed over long periods of time. We predicted that persistent PTS symptoms across ~24 years would be inversely associated with hippocampal, amygdala, anterior cingulate volumes, and hippocampal occupancy (HOC = hippocampal volume/[hippocampal volume + inferior lateral ventricle volume]) in late middle age. Exploratory analyses examined prefrontal regions. We assessed PTS symptoms in 247 men at average ages 38 (time 1) and 62 (time 2). All were trauma-exposed prior to time 1. Brain volumes were assessed at time 2 using 3 T structural magnetic resonance imaging. Symptoms were correlated over time (r = 0.46 p < .0001). Higher PTS symptoms averaged over time and symptoms at time 1 were both associated with lower hippocampal, amygdala, rostral middle frontal gyrus (MFG), and medial orbitofrontal cortex (OFC) volumes, and a lower HOC ratio at time 2. Increased PTS symptomatology from time 1 to time 2 was associated with smaller hippocampal volume. Results for hippocampal, rostral MFG and medial OFC remained significant after omitting individuals above the threshold for PTSD diagnosis. Even at sub-diagnostic threshold levels, PTS symptoms were present decades after trauma exposure in parallel with highly correlated structural deficits in brain regions regulating stress responsivity and adaptation.

12 citations


Cites background or methods from "Predicting MCI outcome with clinica..."

  • ...Hippocampal occupancy was calculated as hippocampal volume/ (hippocampal volume + inferior lateral ventricle volume), first for each hemisphere and then averaged (Heister et al. 2011)....

    [...]

  • ...Although the HOC index has been examined in studies of mild cognitive impairment and Alzheimer’s disease (Heister et al. 2011; Jak et al. 2015; Tanpitukpongse et al. 2017), to our knowledge no studies have reported on the relationship between PTS symptoms and hippocampal occupancy....

    [...]

  • ...…by some as a way of differentiating individuals with a congenitally small hippocampus from those with a small hippocampus relative to the size of the inferior lateral ventricle—potentially an indicator of neurodegeneration (Heister et al. 2011; Jak et al. 2015; Tanpitukpongse et al. 2017)....

    [...]

  • ...…ventricle, the HOC is indicative of the size of the hippocampus in relation to the ventricle and has often been interpreted as an indirect cross-sectional estimation of mesial temporal lobe atrophy with increases in the ventricle due to ex vacuo dilation (Heister et al. 2011; Jak et al. 2015)....

    [...]

Journal ArticleDOI
TL;DR: The review finds that NeuroQuant® is an objective, reliable, and practical means of measuring brain volume and therefore can be an important tool for measuring the effects of TBI on brain volume in clinical or medicolegal settings.
Abstract: Decades of research have shown that the brain atrophies after traumatic brain injury (TBI). However, multiple practical issues made it difficult to detect brain atrophy in individual patients with mild to moderate TBI. This situation improved by 2007 with the FDA approval of NeuroQuant®, a commercially available, computer-automated software program for measuring MRI brain volume in human subjects. Several peer-reviewed scientific studies have supported the reliability and validity of NeuroQuant®. This review addresses whether NeuroQuant® meets the Daubert standard for admissibility in court cases involving persons with TBI. The review finds that NeuroQuant® is an objective, reliable, and practical means of measuring brain volume and therefore can be an important tool for measuring the effects of TBI on brain volume in clinical or medicolegal settings.

11 citations


Cites methods from "Predicting MCI outcome with clinica..."

  • ...NeuroQuant® has been found to be valid in assessing Alzheimer’s disease (Brewer et al., 2009; Heister et al., 2011) and TBI (Ross, Ochs, Seabaugh, & Henshaw, 2012a; Ross et al....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The workgroup sought to ensure that the revised criteria would be flexible enough to be used by both general healthcare providers without access to neuropsychological testing, advanced imaging, and cerebrospinal fluid measures, and specialized investigators involved in research or in clinical trial studies who would have these tools available.
Abstract: The National Institute on Aging and the Alzheimer's Association charged a workgroup with the task of revising the 1984 criteria for Alzheimer's disease (AD) dementia. The workgroup sought to ensure that the revised criteria would be flexible enough to be used by both general healthcare providers without access to neuropsychological testing, advanced imaging, and cerebrospinal fluid measures, and specialized investigators involved in research or in clinical trial studies who would have these tools available. We present criteria for all-cause dementia and for AD dementia. We retained the general framework of probable AD dementia from the 1984 criteria. On the basis of the past 27 years of experience, we made several changes in the clinical criteria for the diagnosis. We also retained the term possible AD dementia, but redefined it in a manner more focused than before. Biomarker evidence was also integrated into the diagnostic formulations for probable and possible AD dementia for use in research settings. The core clinical criteria for AD dementia will continue to be the cornerstone of the diagnosis in clinical practice, but biomarker evidence is expected to enhance the pathophysiological specificity of the diagnosis of AD dementia. Much work lies ahead for validating the biomarker diagnosis of AD dementia.

13,710 citations

Journal ArticleDOI
TL;DR: A conceptual framework and operational research criteria are proposed, based on the prevailing scientific evidence to date, to test and refine these models with longitudinal clinical research studies and it is hoped that these recommendations will provide a common rubric to advance the study of preclinical AD.
Abstract: The pathophysiological process of Alzheimer's disease (AD) is thought to begin many years before the diagnosis of AD dementia. This long "preclinical" phase of AD would provide a critical opportunity for therapeutic intervention; however, we need to further elucidate the link between the pathological cascade of AD and the emergence of clinical symptoms. The National Institute on Aging and the Alzheimer's Association convened an international workgroup to review the biomarker, epidemiological, and neuropsychological evidence, and to develop recommendations to determine the factors which best predict the risk of progression from "normal" cognition to mild cognitive impairment and AD dementia. We propose a conceptual framework and operational research criteria, based on the prevailing scientific evidence to date, to test and refine these models with longitudinal clinical research studies. These recommendations are solely intended for research purposes and do not have any clinical implications at this time. It is hoped that these recommendations will provide a common rubric to advance the study of preclinical AD, and ultimately, aid the field in moving toward earlier intervention at a stage of AD when some disease-modifying therapies may be most efficacious.

5,671 citations

Journal ArticleDOI
TL;DR: This work proposes a model that relates disease stage to AD biomarkers in which Abeta biomarkers become abnormal first, before neurodegenerative biomarkers and cognitive symptoms, and neurodegnerative biomarker become abnormal later, and correlate with clinical symptom severity.
Abstract: Summary Currently available evidence strongly supports the position that the initiating event in Alzheimer's disease (AD) is related to abnormal processing of β-amyloid (Aβ) peptide, ultimately leading to formation of Aβ plaques in the brain. This process occurs while individuals are still cognitively normal. Biomarkers of brain β-amyloidosis are reductions in CSF Aβ 42 and increased amyloid PET tracer retention. After a lag period, which varies from patient to patient, neuronal dysfunction and neurodegeneration become the dominant pathological processes. Biomarkers of neuronal injury and neurodegeneration are increased CSF tau and structural MRI measures of cerebral atrophy. Neurodegeneration is accompanied by synaptic dysfunction, which is indicated by decreased fluorodeoxyglucose uptake on PET. We propose a model that relates disease stage to AD biomarkers in which Aβ biomarkers become abnormal first, before neurodegenerative biomarkers and cognitive symptoms, and neurodegenerative biomarkers become abnormal later, and correlate with clinical symptom severity.

3,953 citations

Journal ArticleDOI
TL;DR: The approach taken in ADNI to standardization across sites and platforms of the MRI protocol, postacquisition corrections, and phantom‐based monitoring of all scanners could be used as a model for other multisite trials.
Abstract: Dementia, one of the most feared associates of increasing longevity, represents a pressing public health problem and major research priority. Alzheimer's disease (AD) is the most common form of dementia, affecting many millions around the world. There is currently no cure for AD, but large numbers of novel compounds are currently under development that have the potential to modify the course of the disease and slow its progression. There is a pressing need for imaging biomarkers to improve understanding of the disease and to assess the efficacy of these proposed treatments. Structural magnetic resonance imaging (MRI) has already been shown to be sensitive to presymptomatic disease (1-10) and has the potential to provide such a biomarker. For use in large-scale multicenter studies, however, standardized methods that produce stable results across scanners and over time are needed. The Alzheimer's Disease Neuroimaging Initiative (ADNI) study is a longitudinal multisite observational study of elderly individuals with normal cognition, mild cognitive impairment (MCI), or AD (11,12). It is jointly funded by the National Institutes of Health (NIH) and industry via the Foundation for the NIH. The study will assess how well information (alone or in combination) obtained from MRI, (18F)-fludeoyglucose positron emission tomography (FDG PET), urine, serum, and cerebrospinal fluid (CSF) biomarkers, as well as clinical and neuropsychometric assessments, can measure disease progression in the three groups of elderly subjects mentioned above. At the 55 participating sites in North America, imaging, clinical, and biologic samples will be collected at multiple time points in 200 elderly cognitively normal, 400 MCI, and 200 AD subjects. All subjects will be scanned with 1.5 T MRI at each time point, and half of these will also be scanned with FDG PET. Subjects not assigned to the PET arm of the study will be eligible for 3 T MRI scanning. The goal is to acquire both 1.5 T and 3 T MRI studies at multiple time points in 25% of the subjects who do not undergo PET scanning [R2C1]. CSF collection at both baseline and 12 months is targeted for 50% of the subjects. Sampling varies by clinical group. Healthy elderly controls will be sampled at 0, 6, 12, 24, and 36 months. Subjects with MCI will be sampled at 0, 6, 12, 18, 24, and 36 months. AD subjects will be sampled at 0, 6, 12, and 24 months. Major goals of the ADNI study are: to link all of these data at each time point and make this repository available to the general scientific community; to develop technical standards for imaging in longitudinal studies; to determine the optimum methods for acquiring and analyzing images; to validate imaging and biomarker data by correlating these with concurrent psychometric and clinical assessments; and to improve methods for clinical trials in MCI and AD. The ADNI study overall is divided into cores, with each core managing ADNI-related activities within its sphere of expertise: clinical, informatics, biostatistics, biomarkers, and imaging. The purpose of this report is to describe the MRI methods and decision-making process underlying the selection of the MRI protocol employed in the ADNI study.

3,611 citations

Journal ArticleDOI
TL;DR: Develop a cerebrospinal fluid biomarker signature for mild Alzheimer's disease (AD) in Alzheimer's Disease Neuroimaging Initiative (ADNI) subjects.
Abstract: If the clinical diagnosis of probable AD is imprecise with accuracy rates of approximately 90% or lower using established consensus criteria for probable AD, but definite AD requires autopsy confirmation, it is not surprising that diagnostic accuracy is lower at early and presymptomatic stages of AD.1–4 It is believed that the development of full-blown AD takes place over an approximately 20-year prodromal period, but this is difficult to determine in the absence of biomarkers that reliably signal the onset of nascent disease before the emergence of measurable cognitive impairments. Because intervention with disease-modifying therapies for AD is likely to be most efficacious before significant neurodegeneration has occurred, there is an urgent need for biomarker-based tests that enable a more accurate and early diagnosis of AD.5–7 Moreover, such tests could also improve monitoring AD progression, evaluation of new AD therapies, and enrichment of AD cohorts with specific subsets of AD subjects in clinical trials. The defining lesions of AD are neurofibrillary tangles and senile plaques formed, respectively, by neuronal accumulations of abnormal hyperphosphorylated tau filaments and extracellular deposits of amyloid β (Aβ) fibrils, mostly the 1 to 42 peptide (Aβ1-42), the least soluble of the known Aβ peptides produced from Aβ precursor protein by the action of various peptidases.1–3 Hence, for these and other reasons summarized in consensus reports on AD biomarkers, cerebrospinal fluid (CSF), total tau (t-tau), and Aβ were identified as being among the most promising and informative AD biomarkers.5,6 Increased levels of tau in CSF are thought to occur after its release from damaged and dying neurons that harbor dystrophic tau neurites and tangles, whereas reduced CSF levels of Aβ1-42 are believed to result from large-scale accumulation of this least soluble of Aβ peptides into insoluble plaques in the AD brain. The combination of increased CSF concentrations of t-tau and phosphotau (p-tau) species and decreased concentrations of Aβ1-42 are considered to be a pathological CSF biomarker signature that is diagnostic for AD.5,6,8,9 Notably, recent studies have provided compelling preliminary data to suggest that this combination of CSF tau and Aβ biomarker changes may predict the conversion to AD in mild cognitive impairment (MCI) subjects.10 Thus, an increase in levels of CSF tau associated with a decline in levels of CSF Aβ1-42 may herald the onset of AD before it becomes clinically manifest. However, before the utility of CSF Aβ1-42 and tau concentrations for diagnosis of AD can be established, it is critical to standardize the methodology for their measurement.5–8,10 For example, among the published studies of CSF tau and Aβ, there is considerable variability in the observed levels of these analytes, as well as their diagnostic sensitivity and specificity. This is attributable to variability in analytical methodology standardization and other factors that differ between studies of the same CSF analytes in similar but not identical cohorts.5–7 The Alzheimer’s Disease Neuroimaging Initiative (ADNI) was launched in 2004 to address these and other limitations in AD biomarkers (see reviews in Shaw and colleagues7 and Mueller and coauthors,11 and the ADNI Web site [http://www.adni-info.org/index] where the ADNI grant and all ADNI data are posted for public access). To this end, the Biomarker Core of ADNI conducts studies on ADNI-derived CSF samples to measure CSF Aβ1-42, t-tau, and p-tau (tau phosphorylated at threonine181 [p-tau181p]) in standardized assays. Evaluation of CSF obtained at baseline evaluation of 416 of the 819 ADNI subjects is now complete, and we report here our findings on the performance of these tests using a standardized multiplex immunoassay system that measures the biomarkers simultaneously in the same sample aliquot in ADNI subjects and in an independent cohort of autopsy-confirmed AD cases.

1,912 citations

Related Papers (5)