scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Predictions for a planet just inside Fomalhaut's eccentric ring

01 Oct 2006-Monthly Notices of the Royal Astronomical Society: Letters (Blackwell Publishing Ltd)-Vol. 372, Iss: 1
TL;DR: In this paper, the eccentricity and sharpness of the edge of Fomalhaut's disk are due to a planet just interior to the ring edge, which is likely to be located at the boundary of a chaotic zone in the corotation region of the planet.
Abstract: We propose that the eccentricity and sharpness of the edge of Fomalhaut’s disk are due to a planet just interior to the ring edge. The collision timescale consistent with the disk opacity is long enough that spiral density waves cannot be driven near the planet. The ring edge is likely to be located at the boundary of a chaotic zone in the corotation region of the planet. We find that this zone can open a gap in a particle disk as long as the collision timescale exceeds the removal or ejection timescale in the zone. We use the slope measured from the ring edge surface brightness profile to place an upper limit on the planet mass. The removal timescale in the chaotic zone is used to estimate a lower limit. The ring edge has eccentricity caused by secular perturbations from the planet. These arguments imply that the planet has a mass between that of Neptune and that of Saturn, a semi-major axis of approximately 119 AU and longitude of periastron and eccentricity, 0.1, the same as that of the ring edge.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the first J-band polarized emission imaging of the Herbig Ae/Be stars HD 150193, HD 163296, and HD 169142 using the Gemini Planet Imager (GPI), along with new H band observations of HD 144432.
Abstract: In order to look for signs of on-going planet formation in young disks, we carried out the first J-band polarized emission imaging of the Herbig Ae/Be stars HD 150193, HD 163296, and HD 169142 using the Gemini Planet Imager (GPI), along with new H band observations of HD 144432. We confirm the complex "double ring" structure for the nearly face-on system HD 169142 first seen in H-band, finding the outer ring to be substantially redder than the inner one in polarized intensity. Using radiative transfer modeling, we developed a physical model that explains the full spectral energy distribution (SED) and J- and H-band surface brightness profiles, suggesting that the differential color of the two rings could come from reddened starlight traversing the inner wall and may not require differences in grain properties. In addition, we clearly detect an elongated, off-center ring in HD 163296 (MWC 275), locating the scattering surface to be 18 AU above the midplane at a radial distance of 77 AU, co-spatial with a ring seen at 1.3mm by ALMA linked to the CO snow line. Lastly, we report a weak tentative detection of scattered light for HD 150193 (MWC 863) and a non-detection for HD 144432; the stellar companion known for each of these targets has likely disrupted the material in the outer disk of the primary star. For HD 163296 and HD 169142, the prominent outer rings we detect could be evidence for giant planet formation in the outer disk or a manifestation of large-scale dust growth processes possibly related to snow-line chemistry.

33 citations


Cites background from "Predictions for a planet just insid..."

  • ...While planets on eccentric orbits can produce off center debris disk rings (e.g., as discussed for Fomalhaut by Quillen 2006), we instead pursue the interpretation that dust scattering off of upper layers of an inclined, flared disk will cause the ring to appear off-center due to the viewing angle…...

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors reported the discovery of resolved scattered light emission from the circumbinary disk around the young double star AK. Sco, at projected separations in the similar to 13-40 AU range.
Abstract: The Search for Planets Orbiting Two Stars survey aims to study the formation and distribution of planets in binary systems by detecting and characterizing circumbinary planets and their formation environments through direct imaging. With the SPHERE Extreme Adaptive Optics instrument, a good contrast can be achieved even at small (< 300 mas) separations from bright stars, which enables studies of planets and disks in a separation range that was previously inaccessible. Here, we report the discovery of resolved scattered light emission from the circumbinary disk around the well-studied young double star AK. Sco, at projected separations in the similar to 13-40 AU range. The sharp morphology of the imaged feature is surprising, given the smooth appearance of the disk in its spectral energy distribution. We show that the observed morphology can be represented either as a highly eccentric ring around AK Sco, or as two separate spiral arms in the disk, wound in opposite directions. The relative merits of these interpretations are discussed, as well as whether these features may have been caused by one or several circumbinary planets interacting with the disk.

31 citations


Cites background from "Predictions for a planet just insid..."

  • ...Planets are often inferred as probable causes of eccentricity in disks, since such a state is otherwise hard to attain (e.g. Quillen 2006)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the Deutsches SOFIA Institut (DSI) under DLR [50 OK 0901] and DFG [Kr 2164/13-1, Kr 2164 /15-1 and Lo 1715/2-1]
Abstract: NASA [NAS2-97001, SOF02-0061, SOF03-0092, NNX15AI86G]; Deutsches SOFIA Institut (DSI) under DLR [50 OK 0901]; DFG [Kr 2164/13-1, Kr 2164/15-1, Lo 1715/2-1]

31 citations


Cites background from "Predictions for a planet just insid..."

  • ...They have a large gap between their warm and cold dust belts, a possible signpost for multiple, low- mass planets beyond the water-ice lines that typically lie near the warm belts (e.g., Quillen 2006; Su et al. 2013)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present observations with the Submillimeter Array (SMA) and the Combined Array for Research in Millimeter-wave Astronomy at 2'' resolution that spatially resolve the debris disks around these nearby (d ~ 50 pc) stars.
Abstract: The presence of debris disks around young main-sequence stars hints at the existence and structure of planetary systems. Millimeter-wavelength observations probe large grains that trace the location of planetesimal belts. The Formation and Evolution of Planetary Systems Spitzer Legacy survey of nearby young solar analogues yielded a sample of five debris disk-hosting stars with millimeter flux suitable for interferometric follow-up. We present observations with the Submillimeter Array (SMA) and the Combined Array for Research in Millimeter-wave Astronomy at ~2'' resolution that spatially resolve the debris disks around these nearby (d ~ 50 pc) stars. Two of the five disks (HD 377, HD 8907) are spatially resolved for the first time and one (HD 104860) is resolved at millimeter wavelengths for the first time. We combine our new observations with archival SMA and Atacama Large Millimeter/Submillimeter Array data to enable a uniform analysis of the full five-object sample. We simultaneously model the broadband photometric data and resolved millimeter visibilities to constrain the dust temperatures and disk morphologies, and perform a Markov Chain Monte Carlo analysis to fit for basic structural parameters. We find that the radii and widths of the cold outer belts exhibit properties consistent with scaled-up versions of the Solar System's Kuiper Belt. All the disks exhibit characteristic grain sizes comparable to the blowout size, and all the resolved observations of emission from large dust grains are consistent with an axisymmetric dust distribution to within the uncertainties. These results are consistent with comparable studies carried out at infrared wavelengths.

31 citations


Cites background from "Predictions for a planet just insid..."

  • ...…1984; Mouillet et al. 1997; Lagrange et al. 2010; Currie et al. 2011; Lagrange et al. 2012; and Fomalhaut: Wyatt & Dent 2002; Holland et al. 2003; Quillen 2006; Chiang et al. 2009; Janson et al. 2012), such features have pointed the way to the discovery of directly imaged planetary-mass…...

    [...]

Journal ArticleDOI
TL;DR: In this paper, the long-term evolution of eccentric structures in debris disks caused by a perturber on an eccentric orbit around the star was investigated, and it was shown that the observed eccentric disk around 2 Reticuli might be evidence of such a scenario.
Abstract: Context. Imaging of debris disks has found evidence for both eccentric and o set disks. One hypothesis is that these provide evidence for massive perturbers, for example planets or binary companions, that sculpt the observed structures. One such disk was recently observed in the far-IR by the Herschel ? Space Observatory around 2 Reticuli. In contrast with previously reported systems, the disk is significantly eccentric, and the system is Gyr-old. Aims. We aim to investigate the long-term evolution of eccentric structures in debris disks caused by a perturber on an eccentric orbit around the star. We hypothesise that the observed eccentric disk around 2 Reticuli might be evidence of such a scenario. If so we are able to constrain the mass and orbit of a potential perturber, either a giant planet or binary companion. Methods. Analytical techniques are used to predict the e ects of a perturber on a debris disk. Numerical N-body simulations are used to verify these results and further investigate the observable structures that could be produced by eccentric perturbers. The long-term evolution of the disk geometry is examined, with particular application to the 2 Reticuli system. In addition, synthetic images of the disk are produced for direct comparison with Herschel observations. Results. We show that an eccentric companion can produce both the observed o sets and eccentric disks. Such e ects are not immediate and we characterise the timescale required for the disk to develop to an eccentric state (and any spirals to vanish). For the case of 2 Reticuli, we place limits on the mass and orbit of the companion required to produce the observations. Synthetic images show that the pattern observed around 2 Reticuli can be produced by an eccentric disk seen close to edge-on, and allow us to bring additional constraints on the disk parameters of our model (disk flux, extent). Conclusions. We determine that eccentric planets or stellar companions can induce long-lived eccentric structures in debris disks. Observations of such eccentric structures, thus, provide potential evidence of the presence of such a companion in a planetary system. We consider the specific example of 2 Reticuli, whose observed eccentric disk can be explained by a distant companion (at tens of AU), on an eccentric orbit (ep & 0:3).

30 citations

References
More filters
Book
01 Jan 1999
TL;DR: In this paper, the two-body problem and the restricted three body problem are considered. And the disturbing function is extended to include the spin-orbit coupling and the resonance perturbations.
Abstract: Preface 1 Structure of the solar system 2 The two-body problem 3 The restricted three-body problem 4 Tides, rotation and shape 5 Spin-orbit coupling 6 The disturbing function 7 Secular perturbations 8 Resonant perturbations 9 Chaos and long-term evolution 10 Planetary rings Appendix A Solar system data Appendix B Expansion of the disturbing function Index

2,383 citations

01 Jan 1999
TL;DR: In this paper, the two-body problem and the restricted three body problem are considered. But the disturbing function is defined as a special case of the two body problem and is not considered in this paper.
Abstract: Preface 1. Structure of the solar system 2. The two-body problem 3. The restricted three-body problem 4. Tides, rotation and shape 5. Spin-orbit coupling 6. The disturbing function 7. Secular perturbations 8. Resonant perturbations 9. Chaos and long-term evolution 10. Planetary rings Appendix A. Solar system data Appendix B. Expansion of the disturbing function Index.

2,132 citations


"Predictions for a planet just insid..." refers background in this paper

  • ...2 T H E P E R I C E N T R E G L OW M O D E L A N D A N E C C E N T R I C E D G E I N F O M A L H AU T ’ S D I S C We follow the theory for secular perturbations induced by a planet (e.g. Murray & Dermott 1999; Wyatt et al. 1999)....

    [...]

  • ...Secular perturbations in the plane can be described in terms of the complex eccentricity variable, z = e exp(i ), where e is the object’s eccentricity and is its longitude of periastron (e.g. Murray & Dermott 1999; Wyatt et al. 1999)....

    [...]

  • ...The functions, b js (α), are Laplace coefficients (see Murray & Dermott 1999 for definitions and numerical expressions)....

    [...]

  • ...The time variation of z is ż = zforced + zproper(t) (1) where zforced = b23/2(α) b13/2(α) ep exp(i p) (2) (Murray & Dermott 1999; Wyatt et al. 1999)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors calculate the rate at which angular momentum and energy are transferred between a disk and a satellite which orbit the same central mass, and show that substantial changes in both the structure of the disk and the orbit of Jupiter must have taken place on a time scale of a few thousand years.
Abstract: We calculate the rate at which angular momentum and energy are transferred between a disk and a satellite which orbit the same central mass. A satellite which moves on a circular orbit exerts a torque on the disk only in the immediate vicinity of its Lindblad resonances. The direction of angular momentum transport is outward, from disk material inside the satellite's orbit to the satellite and from the satellite to disk material outside its orbit. A satellite with an eccentric orbit exerts a torque on the disk at corotation resonances as well as at Lindblad resonances. The angular momentum and energy transfer at Lindblad resonances tends to increase the satellite's orbit eccentricity whereas the transfer at corotation resonances tends to decrease it. In a Keplerian disk, to lowest order in eccentricity and in the absence of nonlinear effects, the corotation resonances dominate by a slight margin and the eccentricity damps. However, if the strongest corotation resonances saturate due to particle trapping, then the eccentricity grows. We present an illustrative application of our results to the interaction between Jupiter and the protoplanetary disk. The angular momentum transfer is shown to be so rapid that substantial changes in both the structure of the disk and the orbit of Jupiter must have taken place on a time scale of a few thousand years.

1,601 citations


"Predictions for a planet just insid..." refers background or methods in this paper

  • ...(4) We have recovered the scaling with planet mass predicted by previous works (Goldreich & Tremaine 1980; Franklin et al. 1980; Lissauer & Espresate 1998) but have also included a dependence on distance from the planet....

    [...]

  • ...Franklin et al. (1980), Goldreich & Tremaine (1980) and Lissauer & Espresate (1998) showed that spiral density waves were efficiently driven at a Lindblad resonance by a satellite when the collision time-scale was above a critical one, t crit, where t crit ∝ μ−2/3, and μ ≡ m p/M ∗ is the ratio of…...

    [...]

Journal ArticleDOI
TL;DR: In this article, the resonance overlap criterion for the onset of stochastic behavior was applied to the planar circular-restricted three-body problem with small mass ratio (mu), and its predictions for mu = 0.001, 0.0001, and 0.00001 were compared to the transitions observed in the numerically determined Kolmogorov-Sinai entropy and found to be in remarkably good agreement.
Abstract: The resonance overlap criterion for the onset of stochastic behavior is applied to the planar circular-restricted three-body problem with small mass ratio (mu). Its predictions for mu = 0.001, 0.0001, and 0.00001 are compared to the transitions observed in the numerically determined Kolmogorov-Sinai entropy and found to be in remarkably good agreement. In addition, an approximate scaling law for the onset of stochastic behavior is derived.

488 citations


"Predictions for a planet just insid..." refers background in this paper

  • ...The width of this zone has been measured numerically and predicted theoretically for a planet in a circular orbit by predicting the semi-major axis at which the first-order mean motion resonances overlap (Wisdom 1980; Duncan, Quinn & Tremaine 1989; Murray & Holman 1997; Mudryk & Wu 2006)....

    [...]

Journal ArticleDOI
23 Apr 1998-Nature
TL;DR: In this paper, the presence of the central cavity, approximately the size of Neptune's orbit, was detected in the emission from Fomalhaut, beta Pictoris and Vega, which may be the signature of Earth-like planets.
Abstract: Indirect detections of massive — presumably Jupiter-like — planets orbiting nearby Sun-like stars have recently been reported1,2. Rocky, Earth-like planets are much more difficult to detect, but clues to their possible existence can nevertheless be obtained from observations of the circumstellar debris disks of dust from which they form. The presence of such disks has been inferred3 from excess far-infrared emission but, with the exception of beta Pictoris4, it has proved difficult to image these structures directly as starlight dominates the faint light scattered by the dust5. A more promising approach is to attempt to image the thermal emission from the dust grains at submillimetre wavelengths6,7. Here we present images of such emission around Fomalhaut, beta Pictoris and Vega. For each star, dust emission is detected from regions comparable in size to the Sun's Kuiper belt of comets. The total dust mass surrounding each star is only a few lunar masses, so any Earth-like planets present must already have formed. The presence of the central cavity, approximately the size of Neptune's orbit, that we detect in the emission from Fomalhaut may indeed be the signature of such planets.

459 citations


"Predictions for a planet just insid..." refers background in this paper

  • ...1 I N T RO D U C T I O N The nearby star Fomalhaut hosts a ring of circumstellar material (Aumann 1985; Gillett 1985) residing between 120 and 160 au from the star (Holland et al. 1998; Dent et al. 2000; Holland et al. 2003)....

    [...]