scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Preliminary Investigation on Crop Growth, Physiology, and Yield of Rice under Partial Root-Zone Irrigation

TL;DR: In this article, a split root experiment was conducted on rice grown in pots with six defined partial root-zone irrigation (PRI) treatments, that is, PRI1, this article 2, PRI3, PRIO4, PRIO5, and PRI6.
Abstract: Rice is a staple food predominantly consumed by more than half of the global population. Water deficit is a crucial threat to produce rice globally. Prevailing water-saving techniques for rice can reduce water inputs but are not widely adopted due to the high yield penalty. Partial root-zone irrigation (PRI) is an innovative water-saving technique that allows simultaneous wet and dry areas within the root zone. We hypothesized that optimized PRI improves the water use and reduces the yield penalty of rice. A split root experiment was conducted on rice grown in pots with six defined PRI treatments, that is, PRI1, PRI2, PRI3, PRI4, PRI5, and PRI6. Half of the root system was wetted and alternated between halves with one- (PRI1), two- (PRI2), three- (PRI3), four- (PRI4), five- (PRI5), and six- (PRI6) day intervals. Conventionally irrigated rice plants where the whole root zone of rice was wetted and grown in the nonsplit pot were maintained and considered as control. Control and PRI treatments were irrigated based on 100% potential evapotranspiration demand (ETc). In particular, one PRI treatment (PRI3) showed a remarkable increase in active roots and leaf photosynthesis (PN) by wet and dry cycles within the root zone. Distinctive shoot responses of rice under PRI indicated enriched physiological responses for superior water productivity. The third-day-interval partial root-zone irrigation (PRI3) and conventional irrigation had similar leaf water potential (Ψleaf), while PRI3 had higher grain yield than conventional treatment and higher root surface area that may have compensated for the moderate level of stress in PRI. The finding that PRI scheduled at three-day intervals (PRI3) was superior to conventional irrigation for a single rice plant is promising and needs to be tested and adapted to field conditions.

Content maybe subject to copyright    Report

References
More filters
Journal ArticleDOI
TL;DR: In this article, the quantum yield of non-cyclic electron transport was found to be directly proportional to the product of the photochemical fluorescence quenching (qQ) and the efficiency of excitation capture by open Photosystem II (PS II) reaction centres (Fv/Fm).

7,821 citations

Journal ArticleDOI
01 Dec 1981-Planta
TL;DR: It was found that the response of the rate of CO2 Assimilation to irradiance, partial pressure of O2, p(O2), and temperature was different at low and high intercellular p(CO2), suggesting that CO2 assimilation rate is governed by different processes at lowand high inter cellular p (CO2).
Abstract: A series of experiments is presented investigating short term and long term changes of the nature of the response of rate of CO2 assimilation to intercellular p(CO2). The relationships between CO2 assimilation rate and biochemical components of leaf photosynthesis, such as ribulose-bisphosphate (RuP2) carboxylase-oxygenase activity and electron transport capacity are examined and related to current theory of CO2 assimilation in leaves of C3 species. It was found that the response of the rate of CO2 assimilation to irradiance, partial pressure of O2, p(O2), and temperature was different at low and high intercellular p(CO2), suggesting that CO2 assimilation rate is governed by different processes at low and high intercellular p(CO2). In longer term changes in CO2 assimilation rate, induced by different growth conditions, the initial slope of the response of CO2 assimilation rate to intercellular p(CO2) could be correlated to in vitro measurements of RuP2 carboxylase activity. Also, CO2 assimilation rate at high p(CO2) could be correlated to in vitro measurements of electron transport rate. These results are consistent with the hypothesis that CO2 assimilation rate is limited by the RuP2 saturated rate of the RuP2 carboxylase-oxygenase at low intercellular p(CO2) and by the rate allowed by RuP2 regeneration capacity at high intercellular p(CO2).

4,385 citations

Journal ArticleDOI
TL;DR: Several cases on the successful use of regulated deficit irrigation (RDI) in fruit trees and vines are reviewed, showing that RDI not only increases water productivity, but also farmers' profits.
Abstract: At present and more so in the future, irrigated agriculture will take place under water scarcity. Insufficient water supply for irrigation will be the norm rather than the exception, and irrigation management will shift from emphasizing production per unit area towards maximizing the production per unit of water consumed, the water productivity. To cope with scarce supplies, deficit irrigation, defined as the application of water below full crop-water requirements (evapotranspiration), is an important tool to achieve the goal of reducing irrigation water use. While deficit irrigation is widely practised over millions of hectares for a number of reasons—from inadequate network design to excessive irrigation expansion relative to catchment supplies—it has not received sufficient attention in research. Its use in reducing water consumption for biomass production, and for irrigation of annual and perennial crops is reviewed here. There is potential for improving water productivity in many field crops and there is sufficient information for defining the best deficit irrigation strategy for many situations. One conclusion is that the level of irrigation supply under deficit irrigation should be relatively high in most cases, one that permits achieving 60–100% of full evapotranspiration. Several cases on the successful use of regulated deficit irrigation (RDI) in fruit trees and vines are reviewed, showing that RDI not only increases water productivity, but also farmers’ profits. Research linking the physiological basis of these responses to the design of RDI strategies is likely to have a significant impact in increasing its adoption in water-limited areas.

1,540 citations

Journal ArticleDOI
TL;DR: This work compares ensembles of water supply and demand projections driven by ensemble output from five global climate models and suggests surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required.
Abstract: We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400-1,400 Pcal (8-24% of present-day total) when CO2 fertilization effects are accounted for or 1,400-2,600 Pcal (24-43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20-60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600-2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required.

827 citations