scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells

06 Jun 2003-Journal of Physical Chemistry B (American Chemical Society)-Vol. 107, Iss: 26, pp 6292-6299
TL;DR: In this paper, a multiwalled carbon nanotube-supported Pt (Pt/MWNT) nanocomposites were prepared by both the aqueous solution reduction of a Pt salt (HCHO reduction) and the reduction of an ion salt in ethylene glycol solution.
Abstract: Multiwalled carbon nanotube-supported Pt (Pt/MWNT) nanocomposites were prepared by both the aqueous solution reduction of a Pt salt (HCHO reduction) and the reduction of a Pt ion salt in ethylene glycol solution. For comparison, a Pt/XC-72 nanocomposite was also prepared by the EG method. The Pt/MWNT catalyst prepared by the EG method has a high and homogeneous dispersion of spherical Pt metal particles with a narrow particle-size distribution. TEM images show that the Pt particle size is in the range of 2-5 nm with a peak at 2.6 nm, which is consistent with 2.5 nm obtained from the XRD broadening calculation. Surface chemical modifications of MWNTs and water content in EG solvent are found to be the key factors in depositing Pt particles on MWNTs. In the case of the direct methanol fuel cell (DMFC) test, the Pt/MWNT catalyst prepared by EG reduction is slightly superior to the catalyst prepared by aqueous reduction and displays significantly higher performance than the Pt/XC-72 catalyst. These differences in catalytic performance between the MWNT-supported or the carbon black XC-72-supported catalysts are attributed to a greater dispersion of the supported Pt particles when the EG method is used, in contrast to aqueous HCHO reduction and to possible unique structural and higher electrical properties when contrasting MWNTs to carbon black XC-72 as a support.
Citations
More filters
Journal ArticleDOI
TL;DR: Graphene has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production).
Abstract: Graphene, emerging as a true 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production). This article selectively reviews recent advances in graphene-based electrochemical sensors and biosensors. In particular, graphene for direct electrochemistry of enzyme, its electrocatalytic activity toward small biomolecules (hydrogen peroxide, NADH, dopamine, etc.), and graphenebased enzyme biosensors have been summarized in more detail; Graphene-based DNA sensing and environmental analysis have been discussed. Future perspectives in this rapidly developing field are also discussed.

2,866 citations

Journal ArticleDOI
TL;DR: More than 100 articles related to anode catalysts for the direct methanol fuel cell (DMFC) are reviewed, mainly focusing on the three most active areas: (1) progress in preparation methods of Pt-Ru catalysts with respect to activity improvement and utilization optimization; (2) preparation of novel carbon materials as catalyst supports to create a highly dispersed and stably supported catalysts; (3) exploration of new catalysts having a low noble metal content and non-noble metal elements through fast activity down-selection methods such as combinatorial methods.

1,607 citations

Journal ArticleDOI
TL;DR: In this article, a general approach for the preparation of graphene−metal particle nanocomposites in a water−ethylene glycol system using graphene oxide as a precursor and metal nanoparticles (Au, Pt and Pd) as building blocks.
Abstract: Graphene sheets, which possess unique nanostructure and a variety of fascinating properties, can be considered as promising nanoscale building blocks of new composites, for example, a support material for the dispersion of nanoparticles. Here, we present a general approach for the preparation of graphene−metal particle nanocomposites in a water−ethylene glycol system using graphene oxide as a precursor and metal nanoparticles (Au, Pt and Pd) as building blocks. These metal nanoparticles are adsorbed on graphene oxide sheets and play a pivotal role in catalytic reduction of graphene oxide with ethylene glycol, leading to the formation of graphene−metal particle nanocomposites. The typical methanol oxidation of graphene−Pt composites in cyclic voltammograms analyses indicated its potential application in direct methanol fuel cells, bringing graphene−particle nanocomposites close to real technological applications.

1,478 citations

Journal ArticleDOI
TL;DR: This review critically assesses the contributions of carbon-based nanomaterials to a broad range of environmental applications: sorbents, high-flux membranes, depth filters, antimicrobial agents, environmental sensors, renewable energy technologies, and pollution prevention strategies.
Abstract: The unique and tunable properties of carbon-based nanomaterials enable new technologies for identifying and addressing environmental challenges. This review critically assesses the contributions of carbon-based nanomaterials to a broad range of environmental applications: sorbents, high-flux membranes, depth filters, antimicrobial agents, environmental sensors, renewable energy technologies, and pollution prevention strategies. In linking technological advance back to the physical, chemical, and electronic properties of carbonaceous nanomaterials, this article also outlines future opportunities for nanomaterial application in environmental systems.

1,343 citations

Journal ArticleDOI
23 Apr 2012-Small
TL;DR: Progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage is reviewed, along with some discussions on challenges and perspectives in this exciting field.
Abstract: It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g., morphological, electrical, optical, and mechanical) properties useful for enhancing the energy-conversion and storage performances. During the past 25 years or so, therefore, considerable efforts have been made to utilize the unique properties of carbon nanomaterials, including fullerenes, carbon nanotubes, and graphene, as energy materials, and tremendous progress has been achieved in developing high-performance energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) devices. This article reviews progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage, along with some discussions on challenges and perspectives in this exciting field.

1,287 citations

References
More filters
Journal ArticleDOI
Sumio Iijima1
01 Nov 1991-Nature
TL;DR: Iijima et al. as mentioned in this paper reported the preparation of a new type of finite carbon structure consisting of needle-like tubes, which were produced using an arc-discharge evaporation method similar to that used for fullerene synthesis.
Abstract: THE synthesis of molecular carbon structures in the form of C60 and other fullerenes1 has stimulated intense interest in the structures accessible to graphitic carbon sheets. Here I report the preparation of a new type of finite carbon structure consisting of needle-like tubes. Produced using an arc-discharge evaporation method similar to that used for fullerene synthesis, the needles grow at the negative end of the electrode used for the arc discharge. Electron microscopy reveals that each needle comprises coaxial tubes of graphitic sheets, ranging in number from 2 up to about 50. On each tube the carbon-atom hexagons are arranged in a helical fashion about the needle axis. The helical pitch varies from needle to needle and from tube to tube within a single needle. It appears that this helical structure may aid the growth process. The formation of these needles, ranging from a few to a few tens of nanometres in diameter, suggests that engineering of carbon structures should be possible on scales considerably greater than those relevant to the fullerenes. On 7 November 1991, Sumio Iijima announced in Nature the preparation of nanometre-size, needle-like tubes of carbon — now familiar as 'nanotubes'. Used in microelectronic circuitry and microscopy, and as a tool to test quantum mechanics and model biological systems, nanotubes seem to have unlimited potential.

39,086 citations

Journal ArticleDOI
01 Jul 1992-Nature
TL;DR: In this article, the authors used a variant of the standard arc-discharge technique for fullerene synthesis under a helium atmosphere, where a carbonaceous deposit formed on one of the graphite rods, consisting of a macroscopic (diameter of about 5 mm) cylinder.
Abstract: INTEREST in carbon fibres1,2 has been stimulated greatly by the recent discovery of hollow graphitic tubules of nanometre dimensions3. There has been much speculation about the properties and potential application of these nanotubes4–8. Theoretical studies predict that their electronic properties will depend on their diameter and degree of helicity4,5. Experimental tests of these ideas has been hampered, however, by the lack of macroscopic quantities of the material. Here we report the synthesis of graphitic nanotubes in gram quantities. We use a variant of the standard arc-discharge technique for fullerene synthesis under a helium atmosphere. Under certain conditions, a carbonaceous deposit forms on one of the graphite rods, consisting of a macroscopic (diameter of about 5 mm) cylinder in which the core comprises pure nanotubes and nanoscale particles in high yield. The purity and yield depend sensitively on the gas pressure in the reaction vessel. Preliminary measurements of the conductivity of the bulk nanotube material indicate a conductivity of about 100 S cm–11.

2,908 citations

Journal ArticleDOI
12 Jul 2001-Nature
TL;DR: A general strategy for the synthesis of highly ordered, rigid arrays of nanoporous carbon having uniform but tunable diameters is described, which gives rise to promising electrocatalytic activity for oxygen reduction and could prove to be practically relevant for fuel-cell technologies.
Abstract: Nanostructured carbon materials are potentially of great technological interest for the development of electronic1,2, catalytic3,4 and hydrogen-storage systems5,6. Here we describe a general strategy for the synthesis of highly ordered, rigid arrays of nanoporous carbon having uniform but tunable diameters (typically 6 nanometres inside and 9 nanometres outside). These structures are formed by using ordered mesoporous silicas as templates, the removal of which leaves a partially ordered graphitic framework. The resulting material supports a high dispersion of platinum nanoparticles, exceeding that of other common microporous carbon materials (such as carbon black, charcoal and activated carbon fibres). The platinum cluster diameter can be controlled to below 3 nanometres, and the high dispersion of these metal clusters gives rise to promising electrocatalytic activity for oxygen reduction, which could prove to be practically relevant for fuel-cell technologies. These nanomaterials can also be prepared in the form of free-standing films by using ordered silica films as the templates.

2,352 citations

Journal ArticleDOI
06 Dec 1996-Science
TL;DR: Large-scale synthesis of aligned carbon nanotubes was achieved by using a method based on chemical vapor deposition catalyzed by iron nanoparticles embedded in mesoporous silica to form an aligned array of isolated tubes with spacings between the tubes.
Abstract: Large-scale synthesis of aligned carbon nanotubes was achieved by using a method based on chemical vapor deposition catalyzed by iron nanoparticles embedded in mesoporous silica. Scanning electron microscope images show that the nanotubes are approximately perpendicular to the surface of the silica and form an aligned array of isolated tubes with spacings between the tubes of about 100 nanometers. The tubes are up to about 50 micrometers long and well graphitized. The growth direction of the nanotubes may be controlled by the pores from which the nanotubes grow.

1,772 citations

Journal ArticleDOI
01 May 1998-Nature
TL;DR: In this paper, template-synthesized carbon tubules are fabricated as free-standing nanoporous carbon membranes, and a narrower, highly ordered graphitic carbon nanotubes can be prepared within the membrane's tubules.
Abstract: Ensembles of aligned and monodisperse tubules of graphitic carbon can be prepared by a templating method1,2,3,4 that involves the chemical-vapour deposition of carbon within the pores of alumina membranes5,6,7. Tubules with diameters as small as 20 nm have been prepared in this way7,8. The carbon comprising these tubules can be transformed from a disordered material to very highly ordered graphite5. Here we show that template-synthesized carbon tubules can be fabricated as free-standing nanoporous carbon membranes, and that narrower, highly ordered graphitic carbon nanotubes can be prepared within the membrane's tubules. Both the outer and the inner tubules are electrochemically active for intercalation of lithium ions, suggesting possible applications in lithium-ion batteries9,10. The membranes can also be filled with nanoparticles of electrocatalytic metals and alloys. Such catalyst-loaded membranes can be used to electrocatalyse O2 reduction and methanol oxidation, two reactions of importance to fuel-cell technology.

1,735 citations