scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years — Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014

TL;DR: This report provides updated ASD prevalence estimates for children aged 8 years during the 2014 surveillance year, on the basis of DSM-IV-TR criteria, and describes characteristics of the population of children with ASD.
Abstract: Problem/condition Autism spectrum disorder (ASD). Period covered 2014. Description of system The Autism and Developmental Disabilities Monitoring (ADDM) Network is an active surveillance system that provides estimates of the prevalence of autism spectrum disorder (ASD) among children aged 8 years whose parents or guardians reside within 11 ADDM sites in the United States (Arizona, Arkansas, Colorado, Georgia, Maryland, Minnesota, Missouri, New Jersey, North Carolina, Tennessee, and Wisconsin). ADDM surveillance is conducted in two phases. The first phase involves review and abstraction of comprehensive evaluations that were completed by professional service providers in the community. Staff completing record review and abstraction receive extensive training and supervision and are evaluated according to strict reliability standards to certify effective initial training, identify ongoing training needs, and ensure adherence to the prescribed methodology. Record review and abstraction occurs in a variety of data sources ranging from general pediatric health clinics to specialized programs serving children with developmental disabilities. In addition, most of the ADDM sites also review records for children who have received special education services in public schools. In the second phase of the study, all abstracted information is reviewed systematically by experienced clinicians to determine ASD case status. A child is considered to meet the surveillance case definition for ASD if he or she displays behaviors, as described on one or more comprehensive evaluations completed by community-based professional providers, consistent with the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR) diagnostic criteria for autistic disorder; pervasive developmental disorder-not otherwise specified (PDD-NOS, including atypical autism); or Asperger disorder. This report provides updated ASD prevalence estimates for children aged 8 years during the 2014 surveillance year, on the basis of DSM-IV-TR criteria, and describes characteristics of the population of children with ASD. In 2013, the American Psychiatric Association published the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), which made considerable changes to ASD diagnostic criteria. The change in ASD diagnostic criteria might influence ADDM ASD prevalence estimates; therefore, most (85%) of the records used to determine prevalence estimates based on DSM-IV-TR criteria underwent additional review under a newly operationalized surveillance case definition for ASD consistent with the DSM-5 diagnostic criteria. Children meeting this new surveillance case definition could qualify on the basis of one or both of the following criteria, as documented in abstracted comprehensive evaluations: 1) behaviors consistent with the DSM-5 diagnostic features; and/or 2) an ASD diagnosis, whether based on DSM-IV-TR or DSM-5 diagnostic criteria. Stratified comparisons of the number of children meeting either of these two case definitions also are reported. Results For 2014, the overall prevalence of ASD among the 11 ADDM sites was 16.8 per 1,000 (one in 59) children aged 8 years. Overall ASD prevalence estimates varied among sites, from 13.1-29.3 per 1,000 children aged 8 years. ASD prevalence estimates also varied by sex and race/ethnicity. Males were four times more likely than females to be identified with ASD. Prevalence estimates were higher for non-Hispanic white (henceforth, white) children compared with non-Hispanic black (henceforth, black) children, and both groups were more likely to be identified with ASD compared with Hispanic children. Among the nine sites with sufficient data on intellectual ability, 31% of children with ASD were classified in the range of intellectual disability (intelligence quotient [IQ] 85). The distribution of intellectual ability varied by sex and race/ethnicity. Although mention of developmental concerns by age 36 months was documented for 85% of children with ASD, only 42% had a comprehensive evaluation on record by age 36 months. The median age of earliest known ASD diagnosis was 52 months and did not differ significantly by sex or race/ethnicity. For the targeted comparison of DSM-IV-TR and DSM-5 results, the number and characteristics of children meeting the newly operationalized DSM-5 case definition for ASD were similar to those meeting the DSM-IV-TR case definition, with DSM-IV-TR case counts exceeding DSM-5 counts by less than 5% and approximately 86% overlap between the two case definitions (kappa = 0.85). Interpretation Findings from the ADDM Network, on the basis of 2014 data reported from 11 sites, provide updated population-based estimates of the prevalence of ASD among children aged 8 years in multiple communities in the United States. The overall ASD prevalence estimate of 16.8 per 1,000 children aged 8 years in 2014 is higher than previously reported estimates from the ADDM Network. Because the ADDM sites do not provide a representative sample of the entire United States, the combined prevalence estimates presented in this report cannot be generalized to all children aged 8 years in the United States. Consistent with reports from previous ADDM surveillance years, findings from 2014 were marked by variation in ASD prevalence when stratified by geographic area, sex, and level of intellectual ability. Differences in prevalence estimates between black and white children have diminished in most sites, but remained notable for Hispanic children. For 2014, results from application of the DSM-IV-TR and DSM-5 case definitions were similar, overall and when stratified by sex, race/ethnicity, DSM-IV-TR diagnostic subtype, or level of intellectual ability. Public health action Beginning with surveillance year 2016, the DSM-5 case definition will serve as the basis for ADDM estimates of ASD prevalence in future surveillance reports. Although the DSM-IV-TR case definition will eventually be phased out, it will be applied in a limited geographic area to offer additional data for comparison. Future analyses will examine trends in the continued use of DSM-IV-TR diagnoses, such as autistic disorder, PDD-NOS, and Asperger disorder in health and education records, documentation of symptoms consistent with DSM-5 terminology, and how these trends might influence estimates of ASD prevalence over time. The latest findings from the ADDM Network provide evidence that the prevalence of ASD is higher than previously reported estimates and continues to vary among certain racial/ethnic groups and communities. With prevalence of ASD ranging from 13.1 to 29.3 per 1,000 children aged 8 years in different communities throughout the United States, the need for behavioral, educational, residential, and occupational services remains high, as does the need for increased research on both genetic and nongenetic risk factors for ASD.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
27 Mar 2020
TL;DR: The prevalence of ASD varied considerably across sites and was higher than previous estimates since 2014, highlighting the variability in the evaluation and detection of ASD across communities and between sociodemographic groups.
Abstract: Problem/condition Autism spectrum disorder (ASD). Period covered 2016. Description of system The Autism and Developmental Disabilities Monitoring (ADDM) Network is an active surveillance program that provides estimates of the prevalence of ASD among children aged 8 years whose parents or guardians live in 11 ADDM Network sites in the United States (Arizona, Arkansas, Colorado, Georgia, Maryland, Minnesota, Missouri, New Jersey, North Carolina, Tennessee, and Wisconsin). Surveillance is conducted in two phases. The first phase involves review and abstraction of comprehensive evaluations that were completed by medical and educational service providers in the community. In the second phase, experienced clinicians who systematically review all abstracted information determine ASD case status. The case definition is based on ASD criteria described in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Results For 2016, across all 11 sites, ASD prevalence was 18.5 per 1,000 (one in 54) children aged 8 years, and ASD was 4.3 times as prevalent among boys as among girls. ASD prevalence varied by site, ranging from 13.1 (Colorado) to 31.4 (New Jersey). Prevalence estimates were approximately identical for non-Hispanic white (white), non-Hispanic black (black), and Asian/Pacific Islander children (18.5, 18.3, and 17.9, respectively) but lower for Hispanic children (15.4). Among children with ASD for whom data on intellectual or cognitive functioning were available, 33% were classified as having intellectual disability (intelligence quotient [IQ] ≤70); this percentage was higher among girls than boys (39% versus 32%) and among black and Hispanic than white children (47%, 36%, and 27%, respectively) [corrected]. Black children with ASD were less likely to have a first evaluation by age 36 months than were white children with ASD (40% versus 45%). The overall median age at earliest known ASD diagnosis (51 months) was similar by sex and racial and ethnic groups; however, black children with IQ ≤70 had a later median age at ASD diagnosis than white children with IQ ≤70 (48 months versus 42 months). Interpretation The prevalence of ASD varied considerably across sites and was higher than previous estimates since 2014. Although no overall difference in ASD prevalence between black and white children aged 8 years was observed, the disparities for black children persisted in early evaluation and diagnosis of ASD. Hispanic children also continue to be identified as having ASD less frequently than white or black children. Public health action These findings highlight the variability in the evaluation and detection of ASD across communities and between sociodemographic groups. Continued efforts are needed for early and equitable identification of ASD and timely enrollment in services.

2,613 citations


Cites background or methods from "Prevalence of Autism Spectrum Disor..."

  • ...8 per 1,000 (one in 59) children aged 8 years in 2014 (3)....

    [...]

  • ...Overall, the magnitude of prevalence differences by race and ethnicity has declined in recent years (3,17)....

    [...]

  • ...8 prevalence estimate the ADDM Network reported in 2014 (3) and approximately 175% higher than (2....

    [...]

  • ...The ADDM Network ASD case definition is based on the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), and the process for scoring the features of the surveillance case definition have been described previously (3,25,26)....

    [...]

  • ...The ADDM Network ASD surveillance methodology is a two-phase process that has been described previously (3)....

    [...]

Journal ArticleDOI
01 Apr 2016
TL;DR: ASD prevalence estimates for children aged 8 years living in catchment areas of the ADDM Network sites in 2012 are provided, overall and stratified by sex, race/ethnicity, and the type of source records (education and health records versus health records only).
Abstract: PROBLEM/CONDITION Autism spectrum disorder (ASD). PERIOD COVERED 2012. DESCRIPTION OF SYSTEM The Autism and Developmental Disabilities Monitoring (ADDM) Network is an active surveillance system that provides estimates of the prevalence and characteristics of ASD among children aged 8 years whose parents or guardians reside in 11 ADDM Network sites in the United States (Arkansas, Arizona, Colorado, Georgia, Maryland, Missouri, New Jersey, North Carolina, South Carolina, Utah, and Wisconsin). Surveillance to determine ASD case status is conducted in two phases. The first phase consists of screening and abstracting comprehensive evaluations performed by professional service providers in the community. Data sources identified for record review are categorized as either 1) education source type, including developmental evaluations to determine eligibility for special education services or 2) health care source type, including diagnostic and developmental evaluations. The second phase involves the review of all abstracted evaluations by trained clinicians to determine ASD surveillance case status. A child meets the surveillance case definition for ASD if one or more comprehensive evaluations of that child completed by a qualified professional describes behaviors that are consistent with the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision diagnostic criteria for any of the following conditions: autistic disorder, pervasive developmental disorder-not otherwise specified (including atypical autism), or Asperger disorder. This report provides ASD prevalence estimates for children aged 8 years living in catchment areas of the ADDM Network sites in 2012, overall and stratified by sex, race/ethnicity, and the type of source records (education and health records versus health records only). In addition, this report describes the proportion of children with ASD with a score consistent with intellectual disability on a standardized intellectual ability test, the age at which the earliest known comprehensive evaluation was performed, the proportion of children with a previous ASD diagnosis, the specific type of ASD diagnosis, and any special education eligibility classification. RESULTS For 2012, the combined estimated prevalence of ASD among the 11 ADDM Network sites was 14.5 per 1,000 (one in 69) children aged 8 years. Estimated prevalence was significantly higher among boys aged 8 years (23.4 per 1,000) than among girls aged 8 years (5.2 per 1,000). Estimated ASD prevalence was significantly higher among non-Hispanic white children aged 8 years (15.3 per 1,000) compared with non-Hispanic black children (13.1 per 1,000), and Hispanic (10.2 per 1,000) children aged 8 years. Estimated prevalence varied widely among the 11 ADDM Network sites, ranging from 8.2 per 1,000 children aged 8 years (in the area of the Maryland site where only health care records were reviewed) to 24.6 per 1,000 children aged 8 years (in New Jersey, where both education and health care records were reviewed). Estimated prevalence was higher in surveillance sites where education records and health records were reviewed compared with sites where health records only were reviewed (17.1 per 1,000 and 10.4 per 1,000 children aged 8 years, respectively; p<0.05). Among children identified with ASD by the ADDM Network, 82% had a previous ASD diagnosis or educational classification; this did not vary by sex or between non-Hispanic white and non-Hispanic black children. A lower percentage of Hispanic children (78%) had a previous ASD diagnosis or classification compared with non-Hispanic white children (82%) and with non-Hispanic black children (84%). The median age at earliest known comprehensive evaluation was 40 months, and 43% of children had received an earliest known comprehensive evaluation by age 36 months. The percentage of children with an earliest known comprehensive evaluation by age 36 months was similar for boys and girls, but was higher for non-Hispanic white children (45%) compared with non-Hispanic black children (40%) and Hispanic children (39%). INTERPRETATION Overall estimated ASD prevalence was 14.5 per 1,000 children aged 8 years in the ADDM Network sites in 2012. The higher estimated prevalence among sites that reviewed both education and health records suggests the role of special education systems in providing comprehensive evaluations and services to children with developmental disabilities. Disparities by race/ethnicity in estimated ASD prevalence, particularly for Hispanic children, as well as disparities in the age of earliest comprehensive evaluation and presence of a previous ASD diagnosis or classification, suggest that access to treatment and services might be lacking or delayed for some children. PUBLIC HEALTH ACTION The ADDM Network will continue to monitor the prevalence and characteristics of ASD among children aged 8 years living in selected sites across the United States. Recommendations from the ADDM Network include enhancing strategies to 1) lower the age of first evaluation of ASD by community providers in accordance with the Healthy People 2020 goal that children with ASD are evaluated by age 36 months and begin receiving community-based support and services by age 48 months; 2) reduce disparities by race/ethnicity in identified ASD prevalence, the age of first comprehensive evaluation, and presence of a previous ASD diagnosis or classification; and 3) assess the effect on ASD prevalence of the revised ASD diagnostic criteria published in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition.

1,553 citations

Journal ArticleDOI
TL;DR: The first systematically calculated estimate of the relative proportion of boys and girls with autism spectrum disorder (ASD) through a meta-analysis of prevalence studies conducted since the introduction of the DSM-IV and the International Classification of Diseases, Tenth Revision is derived.
Abstract: Objective To derive the first systematically calculated estimate of the relative proportion of boys and girls with autism spectrum disorder (ASD) through a meta-analysis of prevalence studies conducted since the introduction of the DSM-IV and the International Classification of Diseases, Tenth Revision . Method Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. The Medline, Embase, and PsycINFO databases were searched, and study quality was rated using a risk-of-bias tool. Random-effects meta-analysis was used. The pooled outcome measurement was the male-to-female odds ratio (MFOR), namely the odds of being male in the group with ASD compared with the non-ASD group. In effect, this is the ASD male-to-female ratio, controlling for the male-to-female ratio among participants without ASD. Results Fifty-four studies were analyzed, with 13,784,284 participants, of whom 53,712 had ASD (43,972 boys and 9,740 girls). The overall pooled MFOR was 4.20 (95% CI 3.84–4.60), but there was very substantial between-study variability (I 2 = 90.9%). High-quality studies had a lower MFOR (3.32; 95% CI 2.88–3.84). Studies that screened the general population to identify participants regardless of whether they already had an ASD diagnosis showed a lower MFOR (3.25; 95% CI 2.93–3.62) than studies that only ascertained participants with a pre-existing ASD diagnosis (MFOR 4.56; 95% CI 4.10–5.07). Conclusion Of children meeting criteria for ASD, the true male-to-female ratio is not 4:1, as is often assumed; rather, it is closer to 3:1. There appears to be a diagnostic gender bias, meaning that girls who meet criteria for ASD are at disproportionate risk of not receiving a clinical diagnosis.

1,401 citations

Journal ArticleDOI
06 Feb 2020-Cell
TL;DR: The largest exome sequencing study of autism spectrum disorder (ASD) to date, using an enhanced analytical framework to integrate de novo and case-control rare variation, identifies 102 risk genes at a false discovery rate of 0.1 or less, consistent with multiple paths to an excitatory-inhibitory imbalance underlying ASD.

1,169 citations

Journal ArticleDOI
TL;DR: There is extensive evidence showing the great potential of neuroimaging data for single subject prediction of various disorders, however, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper.

699 citations

References
More filters
Journal ArticleDOI
TL;DR: This review explores the current status of epidemiological, genetic, and neuroendocrinological work addressing ASD prevalence and liability in males and females so as to frame the major issues necessary to pursue a more complete understanding of the biological basis for sex-differential risk.
Abstract: Purpose of reviewA strong male bias in autism spectrum disorder (ASD) prevalence has been observed with striking consistency, but no mechanism has yet to definitively account for this sex difference. This review explores the current status of epidemiological, genetic, and neuroendocrinological work

856 citations


"Prevalence of Autism Spectrum Disor..." refers background in this paper

  • ...No data are available to support possible etiologic implications for these differences, including the sex difference (20)....

    [...]

DatasetDOI
18 Dec 2009
TL;DR: The most recent data from the Autism and Developmental Disabilities Monitoring (ADDM) Network showed that the prevalence of autism spectrum disorders (ASDs) increased by 57% between 2002 and 2006 as mentioned in this paper, with an average prevalence of 9.0 per 1,000 population (95% confidence interval [CI] = 8.6-9.3).
Abstract: PROBLEM/CONDITION Autism spectrum disorders (ASDs) are a group of developmental disabilities characterized by atypical development in socialization, communication, and behavior. ASDs typically are apparent before age 3 years, with associated impairments affecting multiple areas of a person's life. Because no biologic marker exists for ASDs, identification is made by professionals who evaluate a child's developmental progress to identify the presence of developmental disorders. REPORTING PERIOD 2006. METHODS Earlier surveillance efforts indicated that age 8 years is a reasonable index age at which to monitor peak prevalence. The identified prevalence of ASDs in U.S. children aged 8 years was estimated through a systematic retrospective review of evaluation records in multiple sites participating in the Autism and Developmental Disabilities Monitoring (ADDM) Network. Data were collected from existing records in 11 ADDM Network sites (areas of Alabama, Arizona, Colorado, Florida, Georgia, Maryland, Missouri, North Carolina, Pennsylvania, South Carolina, and Wisconsin) for 2006. To analyze changes in identified ASD prevalence, CDC compared the 2006 data with data collected from 10 sites (all sites noted above except Florida) in 2002. Children aged 8 years with a notation of an ASD or descriptions consistent with an ASD were identified through screening and abstraction of existing health and education records containing professional assessments of the child's developmental progress at health-care or education facilities. Children aged 8 years whose parent(s) or legal guardian(s) resided in the respective areas in 2006 met the case definition for an ASD if their records documented behaviors consistent with the Diagnostic and Statistical Manual of Mental Disorders, 4th edition, text revision (DSM-IV-TR) criteria for autistic disorder, pervasive developmental disorder--not otherwise specified (PDD NOS), or Asperger disorder. Presence of an identified ASD was determined through a review of data abstracted from developmental evaluation records by trained clinician reviewers. RESULTS For the 2006 surveillance year, 2,757 (0.9%) of 308,038 [corrected] children aged 8 years residing in the 11 ADDM sites were identified as having an ASD, indicating an overall average prevalence of 9.0 per 1,000 population (95% confidence interval [CI] = 8.6--9.3). ASD prevalence per 1,000 children aged 8 years ranged from 4.2 in Florida to 12.1 in Arizona and Missouri, with prevalence for the majority of sites ranging between 7.6 and 10.4. For 2006, ASD prevalence was significantly lower in Florida (p<0.001) and Alabama (p<0.05) and higher in Arizona and Missouri (p<0.05) than in all other sites. The ratio of males to females ranged from 3.2:1 in Alabama to 7.6:1 in Florida. ASD prevalence varied by type of ascertainment source, with higher average prevalence in sites with access to health and education records (10.0) compared with sites with health records only (7.5). Although parental or professional concerns regarding development before age 36 months were noted in the evaluation records of the majority of children who were identified as having an ASD, the median age of earliest documented ASD diagnosis was much later (range: 41 months [Florida]-60 months [Colorado]). Of 10 sites that collected data for both the 2002 and 2006 surveillance years, nine observed an increase in ASD prevalence (range: 27%-95% increase; p<0.01), with increases among males in all sites and among females in four of 11 sites, and variation among other subgroups. INTERPRETATION In 2006, on average, approximately 1% or one child in every 110 in the 11 ADDM sites was classified as having an ASD (approximate range: 1:80-1:240 children [males: 1:70; females: 1:315]). The average prevalence of ASDs identified among children aged 8 years increased 57% in 10 sites from the 2002 to the 2006 ADDM surveillance year. Although improved ascertainment accounts for some of the prevalence increases documented in the ADDM sites, a true increase in the risk for children to develop ASD symptoms cannot be ruled out. On average, although delays in identification persisted, ASDs were being diagnosed by community professionals at earlier ages in 2006 than in 2002. PUBLIC HEALTH ACTIONS These results indicate an increased prevalence of identified ASDs among U.S. children aged 8 years and underscore the need to regard ASDs as an urgent public health concern. Continued monitoring is needed to document and understand changes over time, including the multiple ascertainment and potential risk factors likely to be contributing. Research is needed to ascertain the factors that put certain persons at risk, and concerted efforts are essential to provide support for persons with ASDs, their families, and communities to improve long-term outcome.

675 citations

Journal ArticleDOI
TL;DR: A series of predictive recommendations about the evolving nature of education and how to best structure both pedagogy and content to succeed in the coming educational shift are offered.
Abstract: in learning, and the critical ingredients seem to translate to a strong pedagogy of education. These ingredients include primary and generative research, active participation, critique and coaching, and the ability to take risks (and potentially be wrong) without negative consequences. The similarities between the process of design and the process of learning in Littky's school are striking, and he's not alone in pursuing a new, designerly approach. His educational model is one of several, which may form a zeitgeist: We may, in fact, be perched on the brink of an educational revolution. And so, I offer a series of predictive recommendations about the evolving nature of education and how to best structure both pedagogy and content to succeed in the coming educational shift: 1. Assume that anything is possible. As an educator you quickly become aware of the relative boundaries of your students, and it's easy to set expectations based on these perceived limitations. Traditional teaching models are quick to group students by these segments—usually defined by socioeconomic boundaries—and these segments have unusual staying power. The educational revolution to come will operate with the assumption of adequation, where students are empowered to try. 2. Understand the \" whole student. \" At all levels of education, the homogenous body of knowledge that is taught en masse has come to mirror the assembly line, with teachers focused on their own tasks with no awareness of the larger context. The educational revolution will empower teachers to support a whole student, realizing that any factual content needs to be positioned in a much larger and broader context. 3. Leverage the content democratization afforded by technology. It's almost colloquial to espouse the rich benefits of Internet content, yet in many educational settings, this repository is ignored. Traditional, and highly conservative, textbooks are used, which are neither engaging nor as broad in focus. During the educational revolu-Recently, an article by Anya Kamenetz, author of DIY U: Edupunks, Edupreneurs, and the Coming Transformation of Higher Education, in which she paints a picture of how much education has changed, was featured on the cover of Fast Company. First graders use proprietary software and hardware; curricula self-adjust to the pace of the students; and the massive amounts of content presented on the Internet have democra-tized—at least on the surface—the challenge of access. Large companies like HP are offering integrated packages like TeachNOW (designed in cooperation with frog design), which …

665 citations


"Prevalence of Autism Spectrum Disor..." refers background in this paper

  • ...The number of children living in outlying school districts was subtracted from the county-level census denominators using school enrollment data from the U.S. Department of Education’s National Center for Education Statistics (27)....

    [...]

  • ...Department of Education’s National Center for Education Statistics (19)....

    [...]

20 Mar 2013
TL;DR: For instance, the prevalence of diagnosed autism spectrum disorder (ASD) as reported by parents of school-aged children (ages 6-17 years) in 2011-2012 was evaluated using cohort analyses that examined the consistency in the 2007 and 2011- 2012 estimates for children whose diagnoses could have been reported in both surveys as discussed by the authors.
Abstract: OBJECTIVES This report presents data on the prevalence of diagnosed autism spectrum disorder (ASD) as reported by parents of school-aged children (ages 6-17 years) in 2011-2012. Prevalence changes from 2007 to 2011-2012 were evaluated using cohort analyses that examine the consistency in the 2007 and 2011-2012 estimates for children whose diagnoses could have been reported in both surveys (i.e., those born in 1994-2005 and diagnosed in or before 2007). DATA SOURCES Data were drawn from the 2007 and 2011-2012 National Survey of Children's Health (NSCH), which are independent nationally representative telephone surveys of households with children. The surveys were conducted by the Centers for Disease Control and Prevention's National Center for Health Statistics with funding and direction from the Health Resources and Services Administration's Maternal and Child Health Bureau. RESULTS The prevalence of parent-reported ASD among children aged 6-17 was 2.00% in 2011-2012, a significant increase from 2007 (1.16%). The magnitude of the increase was greatest for boys and for adolescents aged 14-17. Cohort analyses revealed consistent estimates of both the prevalence of parent-reported ASD and autism severity ratings over time. Children who were first diagnosed in or after 2008 accounted for much of the observed prevalence increase among school-aged children (those aged 6-17). School-aged children diagnosed in or after 2008 were more likely to have milder ASD and less likely to have severe ASD than those diagnosed in or before 2007. CONCLUSIONS The results of the cohort analyses increase confidence that differential survey measurement error over time was not a major contributor to observed changes in the prevalence of parent-reported ASD. Rather, much of the prevalence increase from 2007 to 2011-2012 for school-aged children was the result of diagnoses of children with previously unrecognized ASD.

632 citations

Journal ArticleDOI
TL;DR: The prevalence of autism in Brick Township seems to be higher than that in other studies, particularly studies conducted in the United States, but within the range of a few recent studies in smaller populations that used more thorough case-finding methods.
Abstract: Objective. This study determined the prevalence of autism for a defined community, Brick Township, New Jersey, using current diagnostic and epidemiologic methods. Methods. The target population was children who were 3 to 10 years of age in 1998, who were residents of Brick Township at any point during that year, and who had an autism spectrum disorder. Autism spectrum disorder was defined as autistic disorder, pervasive developmental disorder-not otherwise specified (PDD-NOS), and Asperger disorder. The study used 4 sources for active case finding: special education records, records from local clinicians providing diagnosis or treatment for developmental or behavioral disabilities, lists of children from community parent groups, and families who volunteered for participation in the study in response to media attention. The autism diagnosis was verified (or ruled out) for 71% of the children through clinical assessment. The assessment included medical and developmental history, physical and neurologic evaluation, assessment of intellectual and behavioral functioning, and administration of the Autism Diagnostic Observation Schedule—Generic. Results. The prevalence of all autism spectrum disorders combined was 6.7 cases per 1000 children. The prevalence for children whose condition met full diagnostic criteria for autistic disorder was 4.0 cases per 1000 children, and the prevalence for PDD-NOS and Asperger disorder was 2.7 cases per 1000 children. Characteristics of children with autism in this study were similar to those in previous studies of autism. Conclusions. The prevalence of autism in Brick Township seems to be higher than that in other studies, particularly studies conducted in the United States, but within the range of a few recent studies in smaller populations that used more thorough case-finding methods.

592 citations


"Prevalence of Autism Spectrum Disor..." refers background or result in this paper

  • ...CDC began tracking the prevalence of ASD and characteristics of children with ASD in the United States in 1998 (2,3)....

    [...]

  • ...The first CDC study, which was based on an investigation in Brick Township, New Jersey (2), identified similar characteristics but higher prevalence of ASD compared with other studies of that era....

    [...]

Related Papers (5)