scispace - formally typeset
Search or ask a question
Book

Principles and applications of organotransition metal chemistry

TL;DR: A perspective survey of organotransition metal complexes according to ligand substitution processes can be found in this paper, with a focus on transition metal complexes with metal carbon-bonded ligands.
Abstract: A perspective Bonding Survey of organotransition metal complexes according to ligand Ligand substitution processes Oxidative-addition and reductive elimination Intramolecular insertion reactions Nucleophilic attack on ligands coordinated to transition metals Electrophilic attacks on coordinated ligands Metallacycles Homogeneous catalytic hydrogenation, hydrosilation, and hydrocyanation Catalytic polymerization of olefins and acetylenes Catalytic reactions involving carbon monoxide Synthetic applications of transition metal hydrides Synthetic applications of transition metal complexes containing metal carbon bonds Synthetic applications of transition metal carbonyl compounds Synthetic application of transition metal carbenes and metallacycles Synthetic applications of transition metal alkene, diene, and duenyl complexes Synthetic applications of transition metal alkyne complexes Synthetic applications of -allyl transition metal complexes Synthetic applications of transition metal arene complexes.
Citations
More filters
Journal ArticleDOI
TL;DR: The focus of this review is on the area of enantioselective transition metal-catalyzed allylic alkylations which may involve C-C as well as C-X (X ) H or heteroatom) bond formation.
Abstract: Efficient and reliable amplification of chirality has borne its greatest fruit with transition metal-catalyzed reactions since enantiocontrol may often be imposed by replacing an achiral or chiral racemic ligand with one that is chiral and scalemic While the most thoroughly developed enantioselective transition metal-catalyzed reactions are those involving transfer of oxygen (epoxidation and dihydroxylation)1,2 and molecular hydrogen,3 the focus of this review is on the area of enantioselective transition metal-catalyzed allylic alkylations which may involve C-C as well as C-X (X ) H or heteroatom) bond formation4-9 The synthetic utility of transitionmetal-catalyzed allylic alkylations has been soundly demonstrated since its introduction nearly three decades ago10-21 In contrast to processes where the allyl moiety acts as the nucleophilic partner, we will limit our discussion to processes which result in nucleophilic displacements on allylic substrates (eq 1) Such reactions have been recorded with a broad

2,576 citations

Journal ArticleDOI
30 May 2002-Nature
TL;DR: The recent development of promising catalytic systems highlights the potential of organometallic chemistry for useful C-H bond activation strategies that will ultimately allow us to exploit Earth's alkane resources more efficiently and cleanly as discussed by the authors.
Abstract: The selective transformation of ubiquitous but inert C–H bonds to other functional groups has far-reaching practical implications, ranging from more efficient strategies for fine chemical synthesis to the replacement of current petrochemical feedstocks by less expensive and more readily available alkanes. The past twenty years have seen many examples of C–H bond activation at transition-metal centres, often under remarkably mild conditions and with high selectivity. Although profitable practical applications have not yet been developed, our understanding of how these organometallic reactions occur, and what their inherent advantages and limitations for practical alkane conversion are, has progressed considerably. In fact, the recent development of promising catalytic systems highlights the potential of organometallic chemistry for useful C–H bond activation strategies that will ultimately allow us to exploit Earth's alkane resources more efficiently and cleanly.

2,284 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of the development of catalysts for olefin metathesis which combine high activity, durability, and excellent tolerance towards polar functional groups.
Abstract: The advent of well-defined catalysts for olefin metathesis which combine high activity, durability, and excellent tolerance towards polar functional groups has revolutionized the field. The past decade has seen the rapid embrace of these reagents as tools for advanced organic and polymer chemistry and the success of this development is witnessed by a plethora of elegant applications to the synthesis of natural and nonnatural products. This review article provides an overview of these developments and intends to familiarize the reader with some very recent advances which hold the promise to expand the scope of the reaction even further. Moreover, the positive impact of metathesis on the fundamental logic of retrosynthetic planning is demonstrated by means of typical examples. Finally, it will be shown that metathesis is by no means restricted to alkenes as substrates, and some comments on metathesis reactions following unconventional mechanistic pathways will also be presented.

1,614 citations

Journal ArticleDOI

1,157 citations

Journal ArticleDOI
TL;DR: The catalytic production of organic molecules is one of the most important applications of organometallic chemistry and enantioselective syntheses of molecules bearing an amine functionality use classical stoichiometric reactions with chiral auxiliaries or utilize enantiomerically pure starting material.
Abstract: The catalytic production of organic molecules is one of the most important applications of organometallic chemistry. For this purpose the distinct reaction chemistry of organic ligands covalently bound to transition metals is exploited. Most organometallic chemistry has focused on the formation of carboncarbon or carbon-hydrogen bonds. The platinum group metals, in particular Pd and Rh, have been the most commonly used elements insfrequently commercializedscatalytic processes that include hydrogenation, hydroformylation and others. On the other hand, carbon-oxygen and carbon-nitrogen bonds are found in the majority of organic molecules and are of particular importance in physiologically active substances. However, catalytic organometallic reactions that lead to the formation of carbonheteroatom bonds are less common.1,2 The catalytic construction of carbon-nitrogen bonds in amines is particularly rare.3-10 Clearly, efficient catalytic routes to nitrogen based molecules are of great interest.11 Especially useful are catalytic hydroaminations of olefins and alkynes which avoid production of byproducts, like salts, generally observed in metal-catalyzed aminations of C-X derivatives (X ) e.g., halogen). However, known aminations of olefins often require stoichiometric use of transition metals and general methods for carrying out aminations catalytically are not yet available.12,13 Most of the present enantioselective syntheses of molecules bearing an amine functionality use classical stoichiometric reactions with chiral auxiliaries or utilize enantiomerically pure starting material.14-16 Hydroamination of alkenes and alkynes, which constitutes the formal addition of a N-H bond across a carbon-carbon multiple bond (Scheme 1), is a transformation of seemingly fundamental simplicity and would appear to offer the most attractive route to numerous classes of organo-nitrogen molecules such as alkylated amines, enamines or imines. Organic chemists have developed various synthetic approaches for the amination of olefins.17-19 Direct addition of nucleophiles H-NR2 to activated alkenes is of general importance for the synthesis of compounds with nitrogen atoms â to groups such as keto, ester, nitrile, sulfoxide, or nitro.13,20-23 These additions usually lead to the anti-Markovnikov products. On the other hand aliphatic olefins as well as most aromatic olefins are often aminated to give the Markovnikov product. One possibility to reverse the reactivity of aliphatic olefins is the use of electrophilic nitrogen radicals which have been used to obtain anti-Markovnikov products.24 In the past much work has been done on the activation of alkenes with stoichiometric amounts of metal.24 Reactions are mostly promoted by complexes of titanium,25 iron,26 zirconium,27 palladium28-31 and mercury.32,33 However, catalytic additions of amines H-NR2 to nonactivated double or triple bonds are still rare. Two basic approaches have been employed to catalytically effect aminations and involve either alkene/alkyne or amine activation routes (Scheme 2).34,140 Alkene activation is generally accomplished with late-transition-metal catalysts, which render coordinated olefins more susceptible to attack by † Dedicated to Dipl. Chem. Martin Eichberger (deceased 11/20/ 1997). 675 Chem. Rev. 1998, 98, 675−703

1,141 citations