scispace - formally typeset
Search or ask a question
Book

Principles of Computerized Tomographic Imaging

01 Jan 1987-
TL;DR: Properties of Computerized Tomographic Imaging provides a tutorial overview of topics in tomographic imaging covering mathematical principles and theory and how to apply the theory to problems in medical imaging and other fields.
Abstract: Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions. The impact of tomography in diagnostic medicine has been revolutionary, since it has enabled doctors to view internal organs with unprecedented precision and safety to the patient. There are also numerous nonmedical imaging applications which lend themselves to methods of computerized tomography, such as mapping of underground resources...cross-sectional imaging of for nondestructive testing...the determination of the brightness distribution over a celestial sphere...three-dimensional imaging with electron microscopy. Principles of Computerized Tomographic Imaging provides a tutorial overview of topics in tomographic imaging covering mathematical principles and theory...how to apply the theory to problems in medical imaging and other fields...several variations of tomography that are currently being researched.
Citations
More filters
Book ChapterDOI
16 Nov 1992
TL;DR: Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease as mentioned in this paper, where OCT is an interferometric technique that detects reflected and backscattered light from tissue.
Abstract: Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described as the optical analogue to ultrasound. The inherent safety of the technology allows for in vivo use of OCT in patients. The main strength of OCT is the depth resolution. In dermatology, most OCT research has turned on non-melanoma skin cancer (NMSC) and non-invasive monitoring of morphological changes in a number of skin diseases based on pattern recognition, and studies have found good agreement between OCT images and histopathological architecture. OCT has shown high accuracy in distinguishing lesions from normal skin, which is of great importance in identifying tumour borders or residual neoplastic tissue after therapy. The OCT images provide an advantageous combination of resolution and penetration depth, but specific studies of diagnostic sensitivity and specificity in dermatology are sparse. In order to improve OCT image quality and expand the potential of OCT, technical developments are necessary. It is suggested that the technology will be of particular interest to the routine follow-up of patients undergoing non-invasive therapy of malignant or premalignant keratinocyte tumours. It is speculated that the continued technological development can propel the method to a greater level of dermatological use.

6,095 citations

Journal ArticleDOI
TL;DR: An overview of the rapidly expanding field of photoacoustic imaging for biomedical applications can be found in this article, where a number of imaging techniques, including depth profiling in layered media, scanning tomography with focused ultrasonic transducers, image forming with an acoustic lens, and computed tomography using unfocused transducers are introduced.
Abstract: Photoacoustic imaging (also called optoacoustic or thermoacoustic imaging) has the potential to image animal or human organs, such as the breast and the brain, with simultaneous high contrast and high spatial resolution. This article provides an overview of the rapidly expanding field of photoacoustic imaging for biomedical applications. Imaging techniques, including depth profiling in layered media, scanning tomography with focused ultrasonic transducers, image forming with an acoustic lens, and computed tomography with unfocused transducers, are introduced. Special emphasis is placed on computed tomography, including reconstruction algorithms, spatial resolution, and related recent experiments. Promising biomedical applications are discussed throughout the text, including (1) tomographic imaging of the skin and other superficial organs by laser-induced photoacoustic microscopy, which offers the critical advantages, over current high-resolution optical imaging modalities, of deeper imaging depth and higher absorptioncontrasts, (2) breast cancerdetection by near-infrared light or radio-frequency–wave-induced photoacoustic imaging, which has important potential for early detection, and (3) small animal imaging by laser-induced photoacoustic imaging, which measures unique optical absorptioncontrasts related to important biochemical information and provides better resolution in deep tissues than optical imaging.

2,343 citations

Journal ArticleDOI
TL;DR: OCT as discussed by the authors synthesises cross-sectional images from a series of laterally adjacent depth-scans, which can be used to assess tissue and cell function and morphology in situ.
Abstract: There have been three basic approaches to optical tomography since the early 1980s: diffraction tomography, diffuse optical tomography and optical coherence tomography (OCT). Optical techniques are of particular importance in the medical field, because these techniques promise to be safe and cheap and, in addition, offer a therapeutic potential. Advances in OCT technology have made it possible to apply OCT in a wide variety of applications but medical applications are still dominating. Specific advantages of OCT are its high depth and transversal resolution, the fact, that its depth resolution is decoupled from transverse resolution, high probing depth in scattering media, contact-free and non-invasive operation, and the possibility to create various function dependent image contrasting methods. This report presents the principles of OCT and the state of important OCT applications. OCT synthesises cross-sectional images from a series of laterally adjacent depth-scans. At present OCT is used in three different fields of optical imaging, in macroscopic imaging of structures which can be seen by the naked eye or using weak magnifications, in microscopic imaging using magnifications up to the classical limit of microscopic resolution and in endoscopic imaging, using low and medium magnification. First, OCT techniques, like the reflectometry technique and the dual beam technique were based on time-domain low coherence interferometry depth-scans. Later, Fourier-domain techniques have been developed and led to new imaging schemes. Recently developed parallel OCT schemes eliminate the need for lateral scanning and, therefore, dramatically increase the imaging rate. These schemes use CCD cameras and CMOS detector arrays as photodetectors. Video-rate three-dimensional OCT pictures have been obtained. Modifying interference microscopy techniques has led to high-resolution optical coherence microscopy that achieved sub-micrometre resolution. This report is concluded with a short presentation of important OCT applications. Ophthalmology is, due to the transparent ocular structures, still the main field of OCT application. The first commercial instrument too has been introduced for ophthalmic diagnostics (Carl Zeiss Meditec AG). Advances in using near-infrared light, however, opened the path for OCT imaging in strongly scattering tissues. Today, optical in vivo biopsy is one of the most challenging fields of OCT application. High resolution, high penetration depth, and its potential for functional imaging attribute to OCT an optical biopsy quality, which can be used to assess tissue and cell function and morphology in situ. OCT can already clarify the relevant architectural tissue morphology. For many diseases, however, including cancer in its early stages, higher resolution is necessary. New broad-bandwidth light sources, like photonic crystal fibres and superfluorescent fibre sources, and new contrasting techniques, give access to new sample properties and unmatched sensitivity and resolution.

1,914 citations


Cites methods from "Principles of Computerized Tomograp..."

  • ...To correct for the radial dependence of the Fourier data density introduced by the projection procedure a filtering step is applied ( Kak and Slaney 1988 )....

    [...]

Journal ArticleDOI
TL;DR: A survey of the work in electrical impedance tomography can be found in this article, where the authors survey some of the most important works in the field. Butt.t.
Abstract: t. This paper surveys some of the work our group has done in electrical impedance tomography.

1,726 citations

Journal ArticleDOI
16 Dec 2004-Nature
TL;DR: It is demonstrated that the full three-dimensional structure of a single orbital can be imaged by a seemingly unlikely technique, using high harmonics generated from intense femtosecond laser pulses focused on aligned molecules.
Abstract: Single-electron wavefunctions, or orbitals, are the mathematical constructs used to describe the multi-electron wavefunction of molecules. Because the highest-lying orbitals are responsible for chemical properties, they are of particular interest. To observe these orbitals change as bonds are formed and broken is to observe the essence of chemistry. Yet single orbitals are difficult to observe experimentally, and until now, this has been impossible on the timescale of chemical reactions. Here we demonstrate that the full three-dimensional structure of a single orbital can be imaged by a seemingly unlikely technique, using high harmonics generated from intense femtosecond laser pulses focused on aligned molecules. Applying this approach to a series of molecular alignments, we accomplish a tomographic reconstruction of the highest occupied molecular orbital of N2. The method also allows us to follow the attosecond dynamics of an electron wave packet.

1,713 citations


Cites background from "Principles of Computerized Tomograp..."

  • ...Alignment of gas-phase molecules Computed tomography refers to the technology of retrieving sectional images of an object, such as a human body, from a series of one-dimensional projection...

    [...]