scispace - formally typeset
Search or ask a question
Book

Principles of Digital Transmission: With Wireless Applications

01 Jul 1999-pp 855-855
TL;DR: Principal of Digital Transmission provides rigorous mathematical tools for the analysis and design of digital transmission systems and applies the fundamental tools of the discipline onto a number of systems, such as wireless data transmission systems.
Abstract: From the Publisher: Principles of Digital Transmission is designed for advanced undergraduate and graduate level students and professions in telecommunications. Teachers and learners can mix and match chapters to create four distinct courses: (1) a one-term basic course in digital communications; (2) a one-term course in advanced digital communications; (3) a one-term course in information theory and coding; (4) a two-term course sequence in digital communications and coding. The book provides rigorous mathematical tools for the analysis and design of digital transmission systems. The authors emphasize methodology in their aim to teach the reader how to do it rather than how it is done. They apply the fundamental tools of the discipline onto a number of systems, such as wireless data transmission systems.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This paper describes the statistical models of fading channels which are frequently used in the analysis and design of communication systems, and focuses on the information theory of fading channel, by emphasizing capacity as the most important performance measure.
Abstract: In this paper we review the most peculiar and interesting information-theoretic and communications features of fading channels. We first describe the statistical models of fading channels which are frequently used in the analysis and design of communication systems. Next, we focus on the information theory of fading channels, by emphasizing capacity as the most important performance measure. Both single-user and multiuser transmission are examined. Further, we describe how the structure of fading channels impacts code design, and finally overview equalization of fading multipath channels.

2,017 citations

Journal ArticleDOI
TL;DR: A memory polynomial model for the predistorter is proposed and implemented using an indirect learning architecture and linearization performance is demonstrated on a three-carrier WCDMA signal.
Abstract: Power amplifiers (PAs) are inherently nonlinear devices and are used in virtually all communications systems. Digital baseband predistortion is a highly cost-effective way to linearize PAs, but most existing architectures assume that the PA has a memoryless nonlinearity. For wider bandwidth applications such as wideband code-division multiple access (WCDMA) or wideband orthogonal frequency-division multiplexing (W-OFDM), PA memory effects can no longer be ignored, and memoryless predistortion has limited effectiveness. In this paper, instead of focusing on a particular PA model and building a corresponding predistorter, we focus directly on the predistorter structure. In particular, we propose a memory polynomial model for the predistorter and implement it using an indirect learning architecture. Linearization performance is demonstrated on a three-carrier WCDMA signal.

1,160 citations

Journal ArticleDOI
TL;DR: This paper tries to gather the recent results regarding the Gaussian-noise model definition, understanding, relations versus other models, validation, limitations, closed form solutions, approximations and, in general, its applications and implications in link analysis and optimization, also within a network environment.
Abstract: Several approximate non-linear fiber propagation models have been proposed over the years. Recent re-consideration and extension of earlier modeling efforts has led to the formalization of the so-called Gaussian-noise (GN) model. The evidence collected so far hints at the GN-model as being a relatively simple and, at the same time, sufficiently reliable tool for performance prediction of uncompensated coherent systems, characterized by a favorable accuracy versus complexity trade-off. This paper tries to gather the recent results regarding the GN-model definition, understanding, relations versus other models, validation, limitations, closed form solutions, approximations and, in general, its applications and implications in link analysis and optimization, also within a network environment.

618 citations

Journal ArticleDOI
TL;DR: Techniques are described for efficiently estimating and compensating for the effects of a communication channel in a multi-carrier wireless communication system using the fact that the transmitted symbols are drawn from a finite-alphabet to efficiently estimate the propagation channel.
Abstract: Techniques are described for efficiently estimating and compensating for the effects of a communication channel in a multi-carrier wireless communication system. The techniques exploit the fact that the transmitted symbols are drawn from a finite-alphabet to efficiently estimate the propagation channel for multi-carrier communication systems, such systems using OFDM modulation. A transmitter transmits data through a communication channel according to the modulation format. A receiver includes a demodulator to demodulate the data and an estimator to estimate the channel based on the demodulated data. The channel estimator applies a power-law operation to the demodulated data to identify the channel. The techniques can be used in both blind and semi-blind modes of channel estimation.

604 citations

01 Jan 2012
TL;DR: The history of traffic and capacity growth and extrapolations for the future, and fibers supporting multiple spatial modes, including multimode and multicore fibers, and the role of digital processing techniques are recounted.
Abstract: Since the first deployments of fiber-optic com- munication systems three decades ago, the capacity carried by a single-mode optical fiber has increased by a staggering 10 000 times. Most of the growth occurred in the first two decades with growth slowing to ten times in the last decade. Over the same three decades, network traffic has increased by a much smaller factor of 100, but with most of the growth occurring in the last few years, when data started dominating network traffic. At the current growth rate, the next factor of 100 in network traffic growth will occur within a decade. The large difference in growth rates between the delivered fiber capacity and the traffic demand is expected to create a capacity shortage within a decade. The first part of the paper recounts the history of traffic and capacity growth and extrapolations for the future. The second part looks into the technological chal- lenges of growing the capacity of single-mode fibers by pre- senting a capacity limit estimate of standard and advanced single-mode optical fibers. The third part presents elementary capacity considerations for transmission over multiple trans- mission modes and how it compares to a single-mode trans- mission. Finally, the last part of the paper discusses fibers supporting multiple spatial modes, including multimode and multicore fibers, and the role of digital processing techniques. Spatial multiplexing in fibers is expected to enable system capacity growth to match traffic growth in the next decades.

506 citations