scispace - formally typeset
Search or ask a question
Book

Principles of fluorescence spectroscopy

01 Jan 1983-
TL;DR: This book describes the fundamental aspects of fluorescence, the biochemical applications of this methodology, and the instrumentation used in fluorescence spectroscopy.
Abstract: Fluorescence methods are being used increasingly in biochemical, medical, and chemical research. This is because of the inherent sensitivity of this technique. and the favorable time scale of the phenomenon of fluorescence. 8 Fluorescence emission occurs about 10- sec (10 nsec) after light absorp tion. During this period of time a wide range of molecular processes can occur, and these can effect the spectral characteristics of the fluorescent compound. This combination of sensitivity and a favorable time scale allows fluorescence methods to be generally useful for studies of proteins and membranes and their interactions with other macromolecules. This book describes the fundamental aspects of fluorescence. and the biochemical applications of this methodology. Each chapter starts with the -theoreticalbasis of each phenomenon of fluorescence, followed by examples which illustrate the use of the phenomenon in the study of biochemical problems. The book contains numerous figures. It is felt that such graphical presentations contribute to pleasurable reading and increased understand ing. Separate chapters are devoted to fluorescence polarization, lifetimes, quenching, energy transfer, solvent effects, and excited state reactions. To enhance the usefulness of this work as a textbook, problems are included which illustrate the concepts described in each chapter. Furthermore, a separate chapter is devoted to the instrumentation used in fluorescence spectroscopy. This chapter will be especially valuable for those perform ing or contemplating fluorescence measurements. Such measurements are easily compromised by failure to consider a number of simple principles."

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
TL;DR: In just three years, the green fluorescent protein from the jellyfish Aequorea victoria has vaulted from obscurity to become one of the most widely studied and exploited proteins in biochemistry and cell biology.
Abstract: In just three years, the green fluorescent protein (GFP) from the jellyfish Aequorea victoria has vaulted from obscurity to become one of the most widely studied and exploited proteins in biochemistry and cell biology. Its amazing ability to generate a highly visible, efficiently emitting internal fluorophore is both intrinsically fascinating and tremendously valuable. High-resolution crystal structures of GFP offer unprecedented opportunities to understand and manipulate the relation between protein structure and spectroscopic function. GFP has become well established as a marker of gene expression and protein targeting in intact cells and organisms. Mutagenesis and engineering of GFP into chimeric proteins are opening new vistas in physiological indicators, biosensors, and photochemical memories.

5,954 citations

Journal ArticleDOI
TL;DR: A. Relaxivity 2331 E. Outerand Second-Sphere relaxivity 2334 F. Methods of Improving Relaxivity 2336 V. Macromolecular Conjugates 2336.
Abstract: A. Water Exchange 2326 B. Proton Exchange 2327 C. Electronic Relaxation 2327 D. Relaxivity 2331 E. Outerand Second-Sphere Relaxivity 2334 F. Methods of Improving Relaxivity 2336 V. Macromolecular Conjugates 2336 A. Introduction 2336 B. General Conjugation Methods 2336 C. Synthetic Linear Polymers 2336 D. Synthetic Dendrimer-Based Agents 2338 E. Naturally Occurring Polymers (Proteins, Polysaccharides, and Nucleic Acids) 2339

4,125 citations

BookDOI
01 Jan 1990
TL;DR: Methods for Three-Dimensional Imaging and Tutorial on Practical Confocal Microscopy and Use of the Confocal Test Specimen.
Abstract: Foundations of Confocal Scanned Imaging in Light Microscopy -- Fundamental Limits in Confocal Microscopy -- Special Optical Elements -- Points, Pixels, and Gray Levels: Digitizing Image Data -- Laser Sources for Confocal Microscopy -- Non-Laser Light Sources for Three-Dimensional Microscopy -- Objective Lenses for Confocal Microscopy -- The Contrast Formation in Optical Microscopy -- The Intermediate Optical System of Laser-Scanning Confocal Microscopes -- Disk-Scanning Confocal Microscopy -- Measuring the Real Point Spread Function of High Numerical Aperture Microscope Objective Lenses -- Photon Detectors for Confocal Microscopy -- Structured Illumination Methods -- Visualization Systems for Multi-Dimensional Microscopy Images -- Automated Three-Dimensional Image Analysis Methods for Confocal Microscopy -- Fluorophores for Confocal Microscopy: Photophysics and Photochemistry -- Practical Considerations in the Selection and Application of Fluorescent Probes -- Guiding Principles of Specimen Preservation for Confocal Fluorescence Microscopy -- Confocal Microscopy of Living Cells -- Aberrations in Confocal and Multi-Photon Fluorescence Microscopy Induced by Refractive Index Mismatch -- Interaction of Light with Botanical Specimens -- Signal-to-Noise Ratio in Confocal Microscopes -- Comparison of Widefield/Deconvolution and Confocal Microscopy for Three-Dimensional Imaging -- Blind Deconvolution -- Image Enhancement by Deconvolution -- Fiber-Optics in Scanning Optical Microscopy -- Fluorescence Lifetime Imaging in Scanning Microscopy -- Multi-Photon Molecular Excitation in Laser-Scanning Microscopy -- Multifocal Multi-Photon Microscopy -- 4Pi Microscopy -- Nanoscale Resolution with Focused Light: Stimulated Emission Depletion and Other Reversible Saturable Optical Fluorescence Transitions Microscopy Concepts -- Mass Storage, Display, and Hard Copy -- Coherent Anti-Stokes Raman Scattering Microscopy -- Related Methods for Three-Dimensional Imaging -- Tutorial on Practical Confocal Microscopy and Use of the Confocal Test Specimen -- Practical Confocal Microscopy -- Selective Plane Illumination Microscopy -- Cell Damage During Multi-Photon Microscopy -- Photobleaching -- Nonlinear (Harmonic Generation) Optical Microscopy -- Imaging Brain Slices -- Fluorescent Ion Measurement -- Confocal and Multi-Photon Imaging of Living Embryos -- Imaging Plant Cells -- Practical Fluorescence Resonance Energy Transfer or Molecular Nanobioscopy of Living Cells -- Automated Confocal Imaging and High-Content Screening for Cytomics -- Automated Interpretation of Subcellular Location Patterns from Three-Dimensional Confocal Microscopy -- Display and Presentation Software -- When Light Microscope Resolution Is Not Enough:Correlational Light Microscopy and Electron Microscopy -- Databases for Two- and Three-Dimensional Microscopical Images in Biology -- Confocal Microscopy of Biofilms — Spatiotemporal Approaches -- Bibliography of Confocal Microscopy.

4,121 citations

Journal ArticleDOI
TL;DR: This Review summarize recent advances in the synthesis and characterization of C-dots and speculate on their future and discuss potential developments for their use in energy conversion/storage, bioimaging, drug delivery, sensors, diagnostics, and composites.
Abstract: Similar to its popular older cousins the fullerene, the carbon nanotube, and graphene, the latest form of nanocarbon, the carbon nanodot, is inspiring intensive research efforts in its own right. These surface-passivated carbonaceous quantum dots, so-called C-dots, combine several favorable attributes of traditional semiconductor-based quantum dots (namely, size- and wavelength-dependent luminescence emission, resistance to photobleaching, ease of bioconjugation) without incurring the burden of intrinsic toxicity or elemental scarcity and without the need for stringent, intricate, tedious, costly, or inefficient preparation steps. C-dots can be produced inexpensively and on a large scale (frequently using a one-step pathway and potentially from biomass waste-derived sources) by many approaches, ranging from simple candle burning to in situ dehydration reactions to laser ablation methods. In this Review, we summarize recent advances in the synthesis and characterization of C-dots. We also speculate on their future and discuss potential developments for their use in energy conversion/storage, bioimaging, drug delivery, sensors, diagnostics, and composites.

3,991 citations


Cites background from "Principles of fluorescence spectros..."

  • ...Ionic strength and pH values are known to affect the fluorescence properties of different molecules and nanoparticles.([35]) A dependence of the C-dot PL intensity on the pH value was seen in a few studies....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this article, the resonance theory of Forster, which involves only allowed transitions, is extended to include transfer by means of forbidden transitions which, it is concluded, are responsible for the transfer in all inorganic systems yet investigated.
Abstract: The term ``sensitized luminescence'' in crystalline phosphors refers to the phenomenon whereby an impurity (activator, or emitter) is enabled to luminesce upon the absorption of light in a different type of center (sensitizer, or absorber) and upon the subsequent radiationless transfer of energy from the sensitizer to the activator The resonance theory of Forster, which involves only allowed transitions, is extended to include transfer by means of forbidden transitions which, it is concluded, are responsible for the transfer in all inorganic systems yet investigated The transfer mechanisms of importance are, in order of decreasing strength, the overlapping of the electric dipole fields of the sensitizer and the activator, the overlapping of the dipole field of the sensitizer with the quadrupole field of the activator, and exchange effects These mechanisms will give rise to ``sensitization'' of about 103−104, 102, and 30 lattice sites surrounding each sensitizer in typical systems The dependence of transfer efficiency upon sensitizer and activator concentrations and on temperature are discussed Application is made of the theory to experimental results on inorganic phosphors, and further experiments are suggested

7,635 citations

Book
01 Aug 1978
TL;DR: In this paper, the authors bring students up to date with the advances in this field -the development of the theory of photoreactions, the utilization of photoresceptors in synthetic sequences, and the advancement of powerful laser techniques to study the mechanisms of the photoreaction.
Abstract: During the last two decades the photochemistry of organic molecules has grown into an important and pervasive branch of organic chemistry. In "Modern Molecular Photochemistry", the author brings students up to date with the advances in this field - the development of the theory of photoreactions, the utilization of photoreactions in synthetic sequences, and the advancement of powerful laser techniques to study the mechanisms of photoreactions.

3,145 citations


"Principles of fluorescence spectros..." refers background or methods in this paper

  • ...Schematic diagram of a spectrofluorometer [1]....

    [...]

  • ...cThis value appears to be incorrect in [188], and was taken from [1]....

    [...]

  • ...Revised from [1] and reprinted with permission from the Biophysical Society....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the decay of donor luminescence in a rigid solution when modified by electronic energy transfer by the exchange mechanism is treated theoretically, and the rate constant for the elementary process of energy transfer is taken to be of the Dexter form, const exp(−2R/L), where R is the donor-acceptor distance and L is a positive constant.
Abstract: The decay of donor luminescence in a rigid solution when modified by electronic energy transfer by the exchange mechanism is treated theoretically. The rate constant for the elementary process of energy transfer is taken to be of the Dexter form, const exp(−2R/L), where R is the donor—acceptor distance and L is a positive constant. Calculations are made of the yield and decay time of the donor luminescence as functions of the acceptor concentration. The resulting relationship among the above quantities enables one to analyze experimental data in a quantitative manner, and thereby to obtain information about an intermolecular exchange interaction. As an example of such an analysis, Ermolaev's data on triplet—triplet transfer between some aromatic molecules are compared with our results, and very good agreement is found with a choice of the single parameter L.

2,125 citations

Journal ArticleDOI
TL;DR: Fluorescence spectra of a number of native and denaturated proteins have been analysed, using spectral band width, spectral maximum position, fluorescence quenching by external ionic quenchers, lifetime, and quantum yield and its changes upon denaturation.
Abstract: — Fluorescence spectra of a number of native and denaturated proteins have been analysed, using spectral band width (ΔΛ), spectral maximum position (Λm), fluorescence quenching by external ionic quenchers, lifetime (b), and quantum yield (q) and its changes upon denaturation. The results enabled a model of fluorescence properties of tryptophan residues in the proteins to be substantiated by considering the existence of three discrete spectral classes, one buried in nonpolar regions of the protein (Λm 330–332 nm, ΔΛ= 48–49nm, q 0.11, τ= 2.1 ns) and two on the surface. One of the latter is completely exposed to water (Λm# 350–353 nm, ΔΛ= 59–61 nm, q# 0.2, τ= 5.4 ns); the other is in limited contact with water which is probably immobilized by bonding at the macromolecular surface (Λm# 340–342 nm, ΔΛ= 53–55 nm, q# 0.3, = 4.4 ns). Some quantitative predictions from the model, for (a) the fraction of fluorescence that is quenched by ionic quenchers, (b) the mean values of quantum yield, and (c) the mean values of fluorescence lifetime for various proteins, show good concordance with independent experimentally determined values.

1,114 citations