scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Principles of optics : electromagnetic theory of propagation, interference and diffraction of light

13 Oct 1999-Physics Today (Cambridge University Press)-Vol. 53, Iss: 10, pp 77-78
TL;DR: The theory of interference and interferometers has been studied extensively in the field of geometrical optics, see as discussed by the authors for a survey of the basic properties of the electromagnetic field.
Abstract: Historical introduction 1. Basic properties of the electromagnetic field 2. Electromagnetic potentials and polarization 3. Foundations of geometrical optics 4. Geometrical theory of optical imaging 5. Geometrical theory of aberrations 6. Image-forming instruments 7. Elements of the theory of interference and interferometers 8. Elements of the theory of diffraction 9. The diffraction theory of aberrations 10. Interference and diffraction with partially coherent light 11. Rigorous diffraction theory 12. Diffraction of light by ultrasonic waves 13. Scattering from inhomogeneous media 14. Optics of metals 15. Optics of crystals 16. Appendices Author index Subject index.
Citations
More filters
Journal ArticleDOI
TL;DR: A new method for fluorescence imaging has been developed that can obtain spatial distributions of large numbers of fluorescent molecules on length scales shorter than the classical diffraction limit, and suggests a means to address a significant number of biological questions that had previously been limited by microscope resolution.

3,437 citations

Journal ArticleDOI
TL;DR: A Monte Carlo model of steady-state light transport in multi-layered tissues (MCML) has been coded in ANSI Standard C; therefore, the program can be used on various computers as mentioned in this paper.

2,678 citations

Journal ArticleDOI
03 Jun 2016-Science
TL;DR: The results firmly establish that metalenses can have widespread applications in laser-based microscopy, imaging, and spectroscopy, with image qualities comparable to a state-of-the-art commercial objective.
Abstract: Subwavelength resolution imaging requires high numerical aperture (NA) lenses, which are bulky and expensive. Metasurfaces allow the miniaturization of conventional refractive optics into planar structures. We show that high-aspect-ratio titanium dioxide metasurfaces can be fabricated and designed as metalenses with NA = 0.8. Diffraction-limited focusing is demonstrated at wavelengths of 405, 532, and 660 nm with corresponding efficiencies of 86, 73, and 66%. The metalenses can resolve nanoscale features separated by subwavelength distances and provide magnification as high as 170×, with image qualities comparable to a state-of-the-art commercial objective. Our results firmly establish that metalenses can have widespread applications in laser-based microscopy, imaging, and spectroscopy.

2,406 citations

Journal ArticleDOI
TL;DR: In this article, the capacity limit of fiber-optic communication systems (or fiber channels?) is estimated based on information theory and the relationship between the commonly used signal to noise ratio and the optical signal-to-noise ratio is discussed.
Abstract: We describe a method to estimate the capacity limit of fiber-optic communication systems (or ?fiber channels?) based on information theory. This paper is divided into two parts. Part 1 reviews fundamental concepts of digital communications and information theory. We treat digitization and modulation followed by information theory for channels both without and with memory. We provide explicit relationships between the commonly used signal-to-noise ratio and the optical signal-to-noise ratio. We further evaluate the performance of modulation constellations such as quadrature-amplitude modulation, combinations of amplitude-shift keying and phase-shift keying, exotic constellations, and concentric rings for an additive white Gaussian noise channel using coherent detection. Part 2 is devoted specifically to the "fiber channel.'' We review the physical phenomena present in transmission over optical fiber networks, including sources of noise, the need for optical filtering in optically-routed networks, and, most critically, the presence of fiber Kerr nonlinearity. We describe various transmission scenarios and impairment mitigation techniques, and define a fiber channel deemed to be the most relevant for communication over optically-routed networks. We proceed to evaluate a capacity limit estimate for this fiber channel using ring constellations. Several scenarios are considered, including uniform and optimized ring constellations, different fiber dispersion maps, and varying transmission distances. We further present evidences that point to the physical origin of the fiber capacity limitations and provide a comparison of recent record experiments with our capacity limit estimation.

2,135 citations

Journal ArticleDOI
TL;DR: It is demonstrated theoretically and experimentally that a specific gradient-index meta-surface can convert a PW to a SW with nearly 100% efficiency, and may pave the way for many applications, including high-efficiency surface plasmon couplers, anti-reflection surfaces, light absorbers, and so on.
Abstract: The arbitrary control of electromagnetic waves is a key aim of photonic research. Although, for example, the control of freely propagating waves (PWs) and surface waves (SWs) has separately become possible using transformation optics and metamaterials, a bridge linking both propagation types has not yet been found. Such a device has particular relevance given the many schemes of controlling electromagnetic waves at surfaces and interfaces, leading to trapped rainbows, lensing, beam bending, deflection, and even anomalous reflection/refraction. Here, we demonstrate theoretically and experimentally that a specific gradient-index meta-surface can convert a PW to a SW with nearly 100% efficiency. Distinct from conventional devices such as prism or grating couplers, the momentum mismatch between PW and SW is compensated by the reflection-phase gradient of the meta-surface, and a nearly perfect PW-SW conversion can happen for any incidence angle larger than a critical value. Experiments in the microwave region, including both far-field and near-field characterizations, are in excellent agreement with full-wave simulations. Our findings may pave the way for many applications, including high-efficiency surface plasmon couplers, anti-reflection surfaces, light absorbers, and so on.

1,567 citations