scispace - formally typeset
Search or ask a question
Book

Principles of polymer chemistry

01 Jan 1953-
About: The article was published on 1953-01-01 and is currently open access. It has received 16827 citations till now. The article focuses on the topics: Polymer physics.
Citations
More filters
Journal ArticleDOI
18 Nov 2005-Science
TL;DR: Covalent organic frameworks (COFs) have been designed and successfully synthesized by condensation reactions of phenyl diboronic acid and hexahydroxytriphenylene to form rigid porous architectures with pore sizes ranging from 7 to 27 angstroms.
Abstract: Covalent organic frameworks (COFs) have been designed and successfully synthesized by condensation reactions of phenyl diboronic acid {C6H4[B(OH)2]2} and hexahydroxytriphenylene [C18H6(OH)6]. Powder x-ray diffraction studies of the highly crystalline products (C3H2BO)6.(C9H12)1 (COF-1) and C9H4BO2 (COF-5) revealed expanded porous graphitic layers that are either staggered (COF-1, P6(3)/mmc) or eclipsed (COF-5, P6/mmm). Their crystal structures are entirely held by strong bonds between B, C, and O atoms to form rigid porous architectures with pore sizes ranging from 7 to 27 angstroms. COF-1 and COF-5 exhibit high thermal stability (to temperatures up to 500 degrees to 600 degrees C), permanent porosity, and high surface areas (711 and 1590 square meters per gram, respectively).

4,843 citations

Book ChapterDOI
TL;DR: The chapter reviews that the denaturation is a process in which the spatial arrangement of the polypeptide chains within the molecule is changed from that typical of the native protein to a more disordered arrangement.
Abstract: Publisher Summary This chapter explores that the changes that take place in the protein molecules during denaturation constitute one of the most interesting and complex classes of reactions that can be found either in nature or in the laboratory These reactions are important because of the information they can provide about the more intimate details of protein structure and function They are also significant because they challenge the chemist with a difficult area for the application of chemical principles The chapter reviews that the denaturation is a process in which the spatial arrangement of the polypeptide chains within the molecule is changed from that typical of the native protein to a more disordered arrangement The chapter also discusses the classification of protein structures: primary, secondary, and tertiary structures The primary structure is that expressed by the structural chemical formula and depends entirely on the chemical valence bonds that the classical organic chemist would write down for the protein molecule The secondary structure is the configuration of the polypeptide chain that results from the satisfaction of the hydrogen bonding potential between the peptide N-H and C=O groups The tertiary structure is the pattern according to which the secondary structures are packed together within the native protein molecule The term “denaturation” as used in this chapter is indented to include changes in both the secondary and tertiary structures

4,528 citations

Journal ArticleDOI
TL;DR: Light scattering experiments revealed that the radius of gyration had a linear dependence on the molar mass of the aggregates, which suggests that the particles are in the form of rods or ribbons, or at least some elongated structure.
Abstract: Equivalent weight (EW) is the number of grams of dry Nafion per mole of sulfonic acid groups when the material is in the acid form. This is an average EW in the sense that the comonomer sequence distribution (that is usually unknown to the investigator and largely unreported) gives a distribution in m in this formula. EW can be ascertained by acid-base titration, by analysis of atomic sulfur, and by FT-IR spectroscopy. The relationship between EW and m is EW ) 100m + 446 so that, for example, the side chains are separated by around 14 CF2 units in a membrane of 1100 EW. Common at the time of this writing are Nafion 117 films. The designation “117” refers to a film having 1100 EW and a nominal thickness of 0.007 in., although 115 and 112 films have also been available. Early-reported studies involved 1200 EW samples as well as special experimental varieties, some being rather thin. The equivalent weight is related to the property more often seen in the field of conventional ion exchange resins, namely the ion exchange capacity (IEC), by the equation IEC ) 1000/EW. The mention of the molecular weight of high equivalent weight (EW > 1000 g‚mol-1) Nafion is almost absent in the literature, although the range 105-106 Da has been mentioned. As this polymer does not form true solutions, the common methods of light scattering and gel permeation chromatography cannot be used to determine molecular weight as well as the size and shape of isolated, truly dissolved molecules. Studies of the structure of this polymer in solvent (albeit not a true solution) will be mentioned in the scattering section of this review. It should be noted that Curtin et al. performed size exclusion chromatography determinations of the molecular weight distribution in Nafion aqueous dispersions after they were heated to high temperatures (230, 250, and 270 °C).1 Before heating, there was a high molecular weight shoulder on a bimodal distribution, due to molecular aggregates, but this shoulder disappeared upon heating, which indicated that the aggregates were disrupted. The peaks for the monomodal distribution for the heated samples were all located at molecular weights slightly higher than 105 g‚mol-1. Also, light scattering experiments revealed that the radius of gyration had a linear dependence on the molar mass of the aggregates, which suggests that the particles are in the form of rods or ribbons, or at least some elongated structure. Nafion ionomers are usually derived from the thermoplastic -SO2F precursor form that can be extruded into sheets of required thickness. Strong interactions between the ionic groups are an obstacle to melt processing. This precursor does not possess the clustered morphology that will be of great concern in this article but does possess Teflon-like crystallinity which persists when the sulfonyl fluoride form is converted to, for example, the K+ form by reacting it with KOH in water and DMSO. Thereafter, the -SO3H form is achieved by soaking the film in a sufficiently concentrated aqueous acid solution. Extrusion of the sulfonyl fluoride precursor can cause microstructural orientation in the machine direction, * Address correspondence to either author. Phone: 601-266-5595/ 4480. Fax: 601-266-5635. E-mail: Kenneth.Mauritz@usm.edu; RBMoore@usm.edu. 4535 Chem. Rev. 2004, 104, 4535−4585

4,130 citations

Journal ArticleDOI
TL;DR: A review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena as mentioned in this paper.
Abstract: Microfabricated integrated circuits revolutionized computation by vastly reducing the space, labor, and time required for calculations. Microfluidic systems hold similar promise for the large-scale automation of chemistry and biology, suggesting the possibility of numerous experiments performed rapidly and in parallel, while consuming little reagent. While it is too early to tell whether such a vision will be realized, significant progress has been achieved, and various applications of significant scientific and practical interest have been developed. Here a review of the physics of small volumes (nanoliters) of fluids is presented, as parametrized by a series of dimensionless numbers expressing the relative importance of various physical phenomena. Specifically, this review explores the Reynolds number Re, addressing inertial effects; the Peclet number Pe, which concerns convective and diffusive transport; the capillary number Ca expressing the importance of interfacial tension; the Deborah, Weissenberg, and elasticity numbers De, Wi, and El, describing elastic effects due to deformable microstructural elements like polymers; the Grashof and Rayleigh numbers Gr and Ra, describing density-driven flows; and the Knudsen number, describing the importance of noncontinuum molecular effects. Furthermore, the long-range nature of viscous flows and the small device dimensions inherent in microfluidics mean that the influence of boundaries is typically significant. A variety of strategies have been developed to manipulate fluids by exploiting boundary effects; among these are electrokinetic effects, acoustic streaming, and fluid-structure interactions. The goal is to describe the physics behind the rich variety of fluid phenomena occurring on the nanoliter scale using simple scaling arguments, with the hopes of developing an intuitive sense for this occasionally counterintuitive world.

4,044 citations