scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Printable Nanocomposite Metalens for High-Contrast Near-Infrared Imaging

01 Jan 2021-ACS Nano (American Chemical Society)-Vol. 15, Iss: 1, pp 698-706
TL;DR: In this paper, a printable metalense composed of a silicon nanocomposite is developed to overcome the manufacturing limitations of conventional metalenses. The nanocompositionite is synthesized by dispersing silicon n...
Abstract: Printable metalenses composed of a silicon nanocomposite are developed to overcome the manufacturing limitations of conventional metalenses. The nanocomposite is synthesized by dispersing silicon n...
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a compact sensor platform that integrates liquid crystals and holographic metasurfaces is proposed to autonomously sense the existence of a volatile gas and provide an immediate visual holographic alarm.
Abstract: The rapid detection of biological and chemical substances in real time is particularly important for public health and environmental monitoring and in the military sector If the process of substance detection to visual reporting can be implemented into a single miniaturized sensor, there could be a profound impact on practical applications Here, we propose a compact sensor platform that integrates liquid crystals (LCs) and holographic metasurfaces to autonomously sense the existence of a volatile gas and provide an immediate visual holographic alarm By combining the advantage of the rapid responses to gases realized by LCs with the compactness of holographic metasurfaces, we develop ultracompact gas sensors without additional complex instruments or machinery to report the visual information of gas detection To prove the applicability of the compact sensors, we demonstrate a metasurface-integrated gas sensor on safety goggles via a one-step nanocasting process that is attachable to flat, curved, and flexible surfaces

114 citations

Journal ArticleDOI
TL;DR: Metasurface-driven OVDs (mOVDs) can contain multiple optical responses in a single device, making them difficult to reverse engineered as discussed by the authors, which can provide a more robust solution for optical anti-counterfeiting.
Abstract: Optically variable devices (OVDs) are in tremendous demand as optical indicators against the increasing threat of counterfeiting. Conventional OVDs are exposed to the danger of fraudulent replication with advances in printing technology and widespread copying methods of security features. Metasurfaces, two-dimensional arrays of subwavelength structures known as meta-atoms, have been nominated as a candidate for a new generation of OVDs as they exhibit exceptional behaviors that can provide a more robust solution for optical anti-counterfeiting. Unlike conventional OVDs, metasurface-driven OVDs (mOVDs) can contain multiple optical responses in a single device, making them difficult to reverse engineered. Well-known examples of mOVDs include ultrahigh-resolution structural color printing, various types of holography, and polarization encoding. In this review, we discuss the new generation of mOVDs. The fundamentals of plasmonic and dielectric metasurfaces are presented to explain how the optical responses of metasurfaces can be manipulated. Then, examples of monofunctional, tunable, and multifunctional mOVDs are discussed. We follow up with a discussion of the fabrication methods needed to realize these mOVDs, classified into prototyping and manufacturing techniques. Finally, we provide an outlook and classification of mOVDs with respect to their capacity and security level. We believe this newly proposed concept of OVDs may bring about a new era of optical anticounterfeit technology leveraging the novel concepts of nano-optics and nanotechnology.

84 citations

Journal ArticleDOI
TL;DR: In this paper , a simple asymmetric spin-orbit interaction (SOI)-based technique is realized for multifunctional metaoptics, employing only a single unit cell, breaking the conventional tradeoff between design complexity and efficient asymmetric transmission efficiency.
Abstract: Symmetric spin–orbit interaction (SOI)‐based approaches apply a practical limit on helicity multiplexed metaoptics, i.e., center symmetric information encoding. Contrarily, asymmetric SOI's based on the combination of geometric and propagation phase‐delay approaches can effectively address such limitations for multifunctional multiplexed metaoptics on the cost of design complexities. In this paper, a simple asymmetric SOI‐based technique is realized for multifunctional metaoptics, employing only a single unit cell, breaking the conventional tradeoff between design complexity and efficient asymmetric transmission efficiency. The design approach depends on geometric phase alone, which eases the fabrication challenges and decreases the computational cost associated with previous asymmetric SOI‐based metaoptics. Furthermore, this study utilizes a new, low‐cost CMOS‐compatible material to optimize the proposed single unit cell for low loss and high transmission efficiency over the complete visible domain. On‐axis and off‐axis holographic metasurfaces are designed and integrated with pressure‐sensitive liquid crystal cells to demonstrate actively tunable metaholography with no limitation of center symmetric information encoding. The simple design technique, cost‐effective fabrication, and finger touch‐enabled holographic output switching make this integrated setup a potential candidate for many applications such as smart safety labeling, motion or touch recognition, and interactive displays for impact monitoring of precious artworks and products.

66 citations

Journal ArticleDOI
TL;DR: In this paper, an electrically controllable bifocal metalens at visible wavelengths by incorporating a metasurface designed to focus light at two different focal lengths, with liquid crystals to actively manipulate the focal length of the metalens through the application of an external bias.
Abstract: Tunable optical devices powered by metasurfaces provide a new path for functional planar optics. In particular, lenses with tunable focal lengths can play a key role in various fields with applications in imaging, displays, and augmented and virtual reality devices. Here, the authors demonstrate an electrically controllable bifocal metalens at visible wavelengths by incorporating a metasurface designed to focus light at two different focal lengths, with liquid crystals to actively manipulate the focal length of the metalens through the application of an external bias. By utilizing hydrogenated amorphous silicon that is optimized to provide an extremely low extinction coefficient in the visible regime, the metalens is highly efficient with measured focusing efficiencies of around 44%. They numerically design and experimentally realize and characterize tunable focusing and demonstrate electrically tunable active imaging at visible wavelengths using the bifocal metalens combined with liquid crystals. Diffraction limited focusing and imaging is verified through the analysis of the measured optical intensities at the focal points and the modulation transfer function. The bifocal metalens is used to demonstrate electrically modulated focus switching between the two designed focal planes, to display images of positive and negative target objects.

62 citations

Journal ArticleDOI
19 Feb 2022-ACS Nano
TL;DR: In this article , a dual-band vectorial metahologram in the visible and ultraviolet (UV) regimes for optical encryption was proposed. But the proposed scheme is limited to the use of a pixelated metasurface.
Abstract: Metasurface-driven optical encryption devices have attracted much attention. Here, we propose a dual-band vectorial metahologram in the visible and ultraviolet (UV) regimes for optical encryption. Nine polarization-encoded vectorial holograms are observed under UV laser illumination, while another independent hologram appears under visible laser illumination. The proposed engineered silicon nitride, which is transparent in UV, is employed to demonstrate the UV hologram. Nine holographic images for different polarization states are encoded using a pixelated metasurface. The dual-band metahologram is experimentally implemented by stacking the individual metasurfaces that operate in the UV and visible. The visible hologram can be decrypted to provide the first key, a polarization state, which is used to decode the password hidden in the UV vectorial hologram through the use of an analyzer. Considering the property of UV to be invisible to the naked eye, the multiple polarization channels of the vectorial hologram, and the dual-band decoupling, the demonstrated dual-band vectorial hologram device could be applied in various high-security and anticounterfeiting applications.

61 citations

References
More filters
Journal ArticleDOI
TL;DR: Monolayers of alkanethiolates on gold are probably the most studied SAMs to date and offer the needed design flexibility, both at the individual molecular and at the material levels, and offer a vehicle for investigation of specific interactions at interfaces, and of the effect of increasing molecular complexity on the structure and stability of two-dimensional assemblies.
Abstract: The field of self-assembled monolayers (SAMs) has witnessed tremendous growth in synthetic sophistication and depth of characterization over the past 15 years.1 However, it is interesting to comment on the modest beginning and on important milestones. The field really began much earlier than is now recognized. In 1946 Zisman published the preparation of a monomolecular layer by adsorption (self-assembly) of a surfactant onto a clean metal surface.2 At that time, the potential of self-assembly was not recognized, and this publication initiated only a limited level of interest. Early work initiated in Kuhn’s laboratory at Gottingen, applying many years of experience in using chlorosilane derivative to hydrophobize glass, was followed by the more recent discovery, when Nuzzo and Allara showed that SAMs of alkanethiolates on gold can be prepared by adsorption of di-n-alkyl disulfides from dilute solutions.3 Getting away from the moisture-sensitive alkyl trichlorosilanes, as well as working with crystalline gold surfaces, were two important reasons for the success of these SAMs. Many self-assembly systems have since been investigated, but monolayers of alkanethiolates on gold are probably the most studied SAMs to date. The formation of monolayers by self-assembly of surfactant molecules at surfaces is one example of the general phenomena of self-assembly. In nature, self-assembly results in supermolecular hierarchical organizations of interlocking components that provides very complex systems.4 SAMs offer unique opportunities to increase fundamental understanding of self-organization, structure-property relationships, and interfacial phenomena. The ability to tailor both head and tail groups of the constituent molecules makes SAMs excellent systems for a more fundamental understanding of phenomena affected by competing intermolecular, molecular-substrates and molecule-solvent interactions like ordering and growth, wetting, adhesion, lubrication, and corrosion. That SAMs are well-defined and accessible makes them good model systems for studies of physical chemistry and statistical physics in two dimensions, and the crossover to three dimensions. SAMs provide the needed design flexibility, both at the individual molecular and at the material levels, and offer a vehicle for investigation of specific interactions at interfaces, and of the effect of increasing molecular complexity on the structure and stability of two-dimensional assemblies. These studies may eventually produce the design capabilities needed for assemblies of three-dimensional structures.5 However, this will require studies of more complex systems and the combination of what has been learned from SAMs with macromolecular science. The exponential growth in SAM research is a demonstration of the changes chemistry as a disciAbraham Ulman was born in Haifa, Israel, in 1946. He studied chemistry in the Bar-Ilan University in Ramat-Gan, Israel, and received his B.Sc. in 1969. He received his M.Sc. in phosphorus chemistry from Bar-Ilan University in 1971. After a brief period in industry, he moved to the Weizmann Institute in Rehovot, Israel, and received his Ph.D. in 1978 for work on heterosubstituted porphyrins. He then spent two years at Northwestern University in Evanston, IL, where his main interest was onedimensional organic conductors. In 1985 he joined the Corporate Research Laboratories of Eastman Kodak Company, in Rochester, NY, where his research interests were molecular design of materials for nonlinear optics and self-assembled monolayers. In 1994 he moved to Polytechnic University where he is the Alstadt-Lord-Mark Professor of Chemistry. His interests encompass self-assembled monolayers, surface engineering, polymers at interface, and surfaces phenomena. 1533 Chem. Rev. 1996, 96, 1533−1554

7,465 citations

Journal ArticleDOI
TL;DR: This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam.
Abstract: Metamaterials are artificially fabricated materials that allow for the control of light and acoustic waves in a manner that is not possible in nature. This Review covers the recent developments in the study of so-called metasurfaces, which offer the possibility of controlling light with ultrathin, planar optical components. Conventional optical components such as lenses, waveplates and holograms rely on light propagation over distances much larger than the wavelength to shape wavefronts. In this way substantial changes of the amplitude, phase or polarization of light waves are gradually accumulated along the optical path. This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam. Metasurfaces are generally created by assembling arrays of miniature, anisotropic light scatterers (that is, resonators such as optical antennas). The spacing between antennas and their dimensions are much smaller than the wavelength. As a result the metasurfaces, on account of Huygens principle, are able to mould optical wavefronts into arbitrary shapes with subwavelength resolution by introducing spatial variations in the optical response of the light scatterers. Such gradient metasurfaces go beyond the well-established technology of frequency selective surfaces made of periodic structures and are extending to new spectral regions the functionalities of conventional microwave and millimetre-wave transmit-arrays and reflect-arrays. Metasurfaces can also be created by using ultrathin films of materials with large optical losses. By using the controllable abrupt phase shifts associated with reflection or transmission of light waves at the interface between lossy materials, such metasurfaces operate like optically thin cavities that strongly modify the light spectrum. Technology opportunities in various spectral regions and their potential advantages in replacing existing optical components are discussed.

4,613 citations

Journal ArticleDOI
03 Jun 2016-Science
TL;DR: The results firmly establish that metalenses can have widespread applications in laser-based microscopy, imaging, and spectroscopy, with image qualities comparable to a state-of-the-art commercial objective.
Abstract: Subwavelength resolution imaging requires high numerical aperture (NA) lenses, which are bulky and expensive. Metasurfaces allow the miniaturization of conventional refractive optics into planar structures. We show that high-aspect-ratio titanium dioxide metasurfaces can be fabricated and designed as metalenses with NA = 0.8. Diffraction-limited focusing is demonstrated at wavelengths of 405, 532, and 660 nm with corresponding efficiencies of 86, 73, and 66%. The metalenses can resolve nanoscale features separated by subwavelength distances and provide magnification as high as 170×, with image qualities comparable to a state-of-the-art commercial objective. Our results firmly establish that metalenses can have widespread applications in laser-based microscopy, imaging, and spectroscopy.

2,406 citations

Journal ArticleDOI
TL;DR: The design of the hologram integrates a ground metal plane with a geometric metasurface that enhances the conversion efficiency between the two circular polarization states, leading to high diffraction efficiency without complicating the fabrication process.
Abstract: Using a metasurface comprising an array of nanorods with different orientations and a backreflector, a hologram image can be obtained in the visible and near-infrared with limited loss of light intensity.

2,075 citations

Journal ArticleDOI
TL;DR: It is shown that by judicious design of nanofins on a surface, it is possible to simultaneously control the phase, group delay and group delay dispersion of light, thereby achieving a transmissive achromatic metalens with large bandwidth.
Abstract: A key goal of metalens research is to achieve wavefront shaping of light using optical elements with thicknesses on the order of the wavelength. Such miniaturization is expected to lead to compact, nanoscale optical devices with applications in cameras, lighting, displays and wearable optics. However, retaining functionality while reducing device size has proven particularly challenging. For example, so far there has been no demonstration of broadband achromatic metalenses covering the entire visible spectrum. Here, we show that by judicious design of nanofins on a surface, it is possible to simultaneously control the phase, group delay and group delay dispersion of light, thereby achieving a transmissive achromatic metalens with large bandwidth. We demonstrate diffraction-limited achromatic focusing and achromatic imaging from 470 to 670 nm. Our metalens comprises only a single layer of nanostructures whose thickness is on the order of the wavelength, and does not involve spatial multiplexing or cascading. While this initial design (numerical aperture of 0.2) has an efficiency of about 20% at 500 nm, we discuss ways in which our approach may be further optimized to meet the demand of future applications. Controlling the geometry of each dielectric element of a nanostructured surface enables frequency-dependent group delay and group delay dispersion engineering, and the fabrication of an achromatic metalens for imaging in the visible in transmission.

1,126 citations