scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Pro-resolving lipid mediators are leads for resolution physiology

05 Jun 2014-Nature (Nature)-Vol. 510, Iss: 7503, pp 92-101
TL;DR: The mechanisms of specialized pro-resolving mediators and omega-3 essential fatty acid pathways that could help us to understand their physiological functions are covered.
Abstract: Advances in our understanding of the mechanisms that bring about the resolution of acute inflammation have uncovered a new genus of pro-resolving lipid mediators that include the lipoxin, resolvin, protectin and maresin families, collectively called specialized pro-resolving mediators. Synthetic versions of these mediators have potent bioactions when administered in vivo. In animal experiments, the mediators evoke anti-inflammatory and novel pro-resolving mechanisms, and enhance microbial clearance. Although they have been identified in inflammation resolution, specialized pro-resolving mediators are conserved structures that also function in host defence, pain, organ protection and tissue remodelling. This Review covers the mechanisms of specialized pro-resolving mediators and omega-3 essential fatty acid pathways that could help us to understand their physiological functions.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The multi-level mechanisms underlying SCI and several risk factors that promote this health-damaging phenotype, including infections, physical inactivity, poor diet, environmental and industrial toxicants and psychological stress are described.
Abstract: Although intermittent increases in inflammation are critical for survival during physical injury and infection, recent research has revealed that certain social, environmental and lifestyle factors can promote systemic chronic inflammation (SCI) that can, in turn, lead to several diseases that collectively represent the leading causes of disability and mortality worldwide, such as cardiovascular disease, cancer, diabetes mellitus, chronic kidney disease, non-alcoholic fatty liver disease and autoimmune and neurodegenerative disorders. In the present Perspective we describe the multi-level mechanisms underlying SCI and several risk factors that promote this health-damaging phenotype, including infections, physical inactivity, poor diet, environmental and industrial toxicants and psychological stress. Furthermore, we suggest potential strategies for advancing the early diagnosis, prevention and treatment of SCI.

1,708 citations

Journal ArticleDOI
TL;DR: The renin-angiotensin-aldosterone system and members of the transforming growth factor-β family play an important role in activation of infarct myofibroblasts, and therapeutic modulation of the inflammatory and reparative response may hold promise for the prevention of postinfarction heart failure.
Abstract: In adult mammals, massive sudden loss of cardiomyocytes after infarction overwhelms the limited regenerative capacity of the myocardium, resulting in the formation of a collagen-based scar. Necrotic cells release danger signals, activating innate immune pathways and triggering an intense inflammatory response. Stimulation of toll-like receptor signaling and complement activation induces expression of proinflammatory cytokines (such as interleukin-1 and tumor necrosis factor-α) and chemokines (such as monocyte chemoattractant protein-1/ chemokine (C-C motif) ligand 2 [CCL2]). Inflammatory signals promote adhesive interactions between leukocytes and endothelial cells, leading to extravasation of neutrophils and monocytes. As infiltrating leukocytes clear the infarct from dead cells, mediators repressing inflammation are released, and anti-inflammatory mononuclear cell subsets predominate. Suppression of the inflammatory response is associated with activation of reparative cells. Fibroblasts proliferate, undergo myofibroblast transdifferentiation, and deposit large amounts of extracellular matrix proteins maintaining the structural integrity of the infarcted ventricle. The renin–angiotensin–aldosterone system and members of the transforming growth factor-β family play an important role in activation of infarct myofibroblasts. Maturation of the scar follows, as a network of cross-linked collagenous matrix is formed and granulation tissue cells become apoptotic. This review discusses the cellular effectors and molecular signals regulating the inflammatory and reparative response after myocardial infarction. Dysregulation of immune pathways, impaired suppression of postinfarction inflammation, perturbed spatial containment of the inflammatory response, and overactive fibrosis may cause adverse remodeling in patients with infarction contributing to the pathogenesis of heart failure. Therapeutic modulation of the inflammatory and reparative response may hold promise for the prevention of postinfarction heart failure.

1,266 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations

Journal ArticleDOI
TL;DR: The induction of a pro-inflammatory and anti-inflammatory eicosanoid storm through the activation of inflammatory receptors by infectious agents is reviewed here.
Abstract: Controlled immune responses to infection and injury involve complex molecular signalling networks with coordinated and often opposing actions. Eicosanoids and related bioactive lipid mediators derived from polyunsaturated fatty acids constitute a major bioactive lipid network that is among the most complex and challenging pathways to map in a physiological context. Eicosanoid signalling, similar to cytokine signalling and inflammasome formation, has primarily been viewed as a pro-inflammatory component of the innate immune response; however, recent advances in lipidomics have helped to elucidate unique eicosanoids and related docosanoids with anti-inflammatory and pro-resolution functions. This has advanced our overall understanding of the inflammatory response and its therapeutic implications. The induction of a pro-inflammatory and anti-inflammatory eicosanoid storm through the activation of inflammatory receptors by infectious agents is reviewed here.

1,026 citations

Journal ArticleDOI
TL;DR: Diet and drugs targeting PUFAs may lead to novel therapeutic approaches for the prevention and treatment of brain disorders, including Alzheimer's disease and major depression.
Abstract: The brain is highly enriched with fatty acids. These include the polyunsaturated fatty acids (PUFAs) arachidonic acid and docosahexaenoic acid, which are largely esterified to the phospholipid cell membrane. Once PUFAs are released from the membrane, they can participate in signal transduction, either directly or after enzymatic conversion to a variety of bioactive derivatives ('mediators'). PUFAs and their mediators regulate several processes within the brain, such as neurotransmission, cell survival and neuroinflammation, and thereby mood and cognition. PUFA levels and the signalling pathways that they regulate are altered in various neurological disorders, including Alzheimer's disease and major depression. Diet and drugs targeting PUFAs may lead to novel therapeutic approaches for the prevention and treatment of brain disorders.

983 citations

References
More filters
Journal ArticleDOI
TL;DR: A better understanding of the molecular basis of myelomonocytic cell plasticity will open new vistas in immunopathology and therapeutic intervention and provide a paradigm for macrophage plasticity and function.
Abstract: Plasticity is a hallmark of cells of the myelomonocytic lineage. In response to innate recognition or signals from lymphocyte subsets, mononuclear phagocytes undergo adaptive responses. Shaping of monocyte-macrophage function is an essential component of resistance to pathogens, tissue damage and repair. The orchestration of myelomonocytic cell function is a key element that links inflammation and cancer and provides a paradigm for macrophage plasticity and function. A better understanding of the molecular basis of myelomonocytic cell plasticity will open new vistas in immunopathology and therapeutic intervention.

3,133 citations

Journal ArticleDOI
TL;DR: Emerging evidence now suggests that an active, coordinated program of resolution initiates in the first few hours after an inflammatory response begins, and the mechanism required for inflammation resolution may underpin the development of drugs that can resolve inflammatory processes in directed and controlled ways.
Abstract: Acute inflammation normally resolves by mechanisms that have remained somewhat elusive. Emerging evidence now suggests that an active, coordinated program of resolution initiates in the first few hours after an inflammatory response begins. After entering tissues, granulocytes promote the switch of arachidonic acid–derived prostaglandins and leukotrienes to lipoxins, which initiate the termination sequence. Neutrophil recruitment thus ceases and programmed death by apoptosis is engaged. These events coincide with the biosynthesis, from omega-3 polyunsaturated fatty acids, of resolvins and protectins, which critically shorten the period of neutrophil infiltration by initiating apoptosis. Consequently, apoptotic neutrophils undergo phagocytosis by macrophages, leading to neutrophil clearance and release of anti-inflammatory and reparative cytokines such as transforming growth factor-β1. The anti-inflammatory program ends with the departure of macrophages through the lymphatics. Understanding these and further details of the mechanism required for inflammation resolution may underpin the development of drugs that can resolve inflammatory processes in directed and controlled ways.

2,242 citations

Journal ArticleDOI
TL;DR: It is reported that lipidomic analysis of exudates obtained in the resolution phase from mice treated with ASA and docosahexaenoic acid produce a novel family of bioactive 17R-hydroxy-containing di- and tri-Hydroxy-docosanoids termed resolvins.
Abstract: Aspirin (ASA) is unique among current therapies because it acetylates cyclooxygenase (COX)-2 enabling the biosynthesis of R- containing precursors of endogenous antiinflammatory mediators. Here, we report that lipidomic analysis of exudates obtained in the resolution phase from mice treated with ASA and docosahexaenoic acid (DHA) (C22:6) produce a novel family of bioactive 17 R -hydroxy-containing di- and tri-hydroxy-docosanoids termed resolvins. Murine brain treated with aspirin produced endogenous 17 R -hydroxydocosahexaenoic acid as did human microglial cells. Human COX-2 converted DHA to 13-hydroxy-DHA that switched with ASA to 17 R -HDHA that also proved a major route in hypoxic endothelial cells. Human neutrophils transformed COX-2-ASA‐derived 17 R -hydroxy-DHA into two sets of novel diand trihydroxy products; one initiated via oxygenation at carbon 7 and the other at carbon 4. These compounds inhibited (IC 50 � 50 pM) microglial cell cytokine expression and in vivo dermal inflammation and peritonitis at ng doses, reducing 40‐80% leukocytic exudates. These results indicate that exudates, vascular, leukocytes and neural cells treated with aspirin convert DHA to novel 17 R -hydroxy series of docosanoids that are potent regulators. These biosynthetic pathways utilize omega-3 DHA and EPA during multicellular events in resolution to produce a family of protective compounds, i.e., resolvins, that enhance proresolution status.

1,608 citations

Journal ArticleDOI
TL;DR: Monotherapy blocking IL-1 activity in autoinflammatory syndromes results in a rapid and sustained reduction in disease severity, including reversal of inflammation-mediated loss of sight, hearing and organ function.
Abstract: Interleukin-1 (IL-1) is a highly active pro-inflammatory cytokine that lowers pain thresholds and damages tissues. Monotherapy blocking IL-1 activity in autoinflammatory syndromes results in a rapid and sustained reduction in disease severity, including reversal of inflammation-mediated loss of sight, hearing and organ function. This approach can therefore be effective in treating common conditions such as post-infarction heart failure, and trials targeting a broad spectrum of new indications are underway. So far, three IL-1-targeted agents have been approved: the IL-1 receptor antagonist anakinra, the soluble decoy receptor rilonacept and the neutralizing monoclonal anti-IL-1β antibody canakinumab. In addition, a monoclonal antibody directed against the IL-1 receptor and a neutralizing anti-IL-1α antibody are in clinical trials.

1,475 citations

Journal ArticleDOI
16 Feb 2011-PLOS ONE
TL;DR: This work has combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today's technology) in the human serum metabolome.
Abstract: Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today's technology) in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum compounds, their concentrations, related literature references and links to their known disease associations are freely available at http://www.serummetabolome.ca.

1,423 citations