scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Problems of fluid dynamics in crystal growth

01 Jan 1985-Progress in Crystal Growth and Characterization (Pergamon)-Vol. 11, Iss: 1, pp 1-39
TL;DR: Analyse des processus de croissance cristalline en prenant en compte les phenomenes de transfert de masse and de chaleur, who jouent un role important as mentioned in this paper.
About: This article is published in Progress in Crystal Growth and Characterization.The article was published on 1985-01-01. It has received 4 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art of physical vapour transport (PVT) and chemical vapour transportation (CVT) is presented in terms of thermodynamics, fluid dynamics and kinetics.

20 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of the transition from laminar to time-period, chaotic and turbulent motion on the non-uniformities and striations at the growth interfaces is discussed.

9 citations

References
More filters
Book
31 Dec 1959
TL;DR: In this paper, a classic account describes the known exact solutions of problems of heat flow, with detailed discussion of all the most important boundary value problems, including boundary value maximization.
Abstract: This classic account describes the known exact solutions of problems of heat flow, with detailed discussion of all the most important boundary value problems.

21,807 citations

Book
01 Jan 1955
TL;DR: The flow laws of the actual flows at high Reynolds numbers differ considerably from those of the laminar flows treated in the preceding part, denoted as turbulence as discussed by the authors, and the actual flow is very different from that of the Poiseuille flow.
Abstract: The flow laws of the actual flows at high Reynolds numbers differ considerably from those of the laminar flows treated in the preceding part. These actual flows show a special characteristic, denoted as turbulence. The character of a turbulent flow is most easily understood the case of the pipe flow. Consider the flow through a straight pipe of circular cross section and with a smooth wall. For laminar flow each fluid particle moves with uniform velocity along a rectilinear path. Because of viscosity, the velocity of the particles near the wall is smaller than that of the particles at the center. i% order to maintain the motion, a pressure decrease is required which, for laminar flow, is proportional to the first power of the mean flow velocity. Actually, however, one ob~erves that, for larger Reynolds numbers, the pressure drop increases almost with the square of the velocity and is very much larger then that given by the Hagen Poiseuille law. One may conclude that the actual flow is very different from that of the Poiseuille flow.

17,321 citations

Book
01 Jan 1954
TL;DR: Molecular theory of gases and liquids as mentioned in this paper, molecular theory of gas and liquids, Molecular theory of liquid and gas, molecular theories of gases, and liquid theory of liquids, مرکز
Abstract: Molecular theory of gases and liquids , Molecular theory of gases and liquids , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی

11,807 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the rate of growth of a surface containing dislocations is proportional to the square of the supersaturation for low values and to the first power for high values of the latter.
Abstract: Parts I and II deal with the theory of crystal growth, parts III and IV with the form (on the atomic scale) of a crystal surface in equilibrium with the vapour. In part I we calculate the rate of advance of monomolecular steps (i.e. the edges of incomplete monomolecular layers of the crystal) as a function of supersaturation in the vapour and the mean concentration of kinks in the steps. We show that in most cases of growth from the vapour the rate of advance of monomolecular steps will be independent of their crystallographic orientation, so that a growing closed step will be circular. We also find the rate of advance for parallel sequences of steps. In part II we find the resulting rate of growth and the steepness of the growth cones or growth pyramids when the persistence of steps is due to the presence of dislocations. The cases in which several or many dislocations are involved are analysed in some detail; it is shown that they will commonly differ little from the case of a single dislocation. The rate of growth of a surface containing dislocations is shown to be proportional to the square of the supersaturation for low values and to the first power for high values of the latter. Volmer & Schultze’s (1931) observations on the rate of growth of iodine crystals from the vapour can be explained in this way. The application of the same ideas to growth of crystals from solution is briefly discussed. Part III deals with the equilibrium structure of steps, especially the statistics of kinks in steps, as dependent on temperature, binding energy parameters, and crystallographic orientation. The shape and size of a two-dimensional nucleus (i.e. an ‘island* of new monolayer of crystal on a completed layer) in unstable equilibrium with a given supersaturation at a given temperature is obtained, whence a corrected activation energy for two-dimensional nucleation is evaluated. At moderately low supersaturations this is so large that a crystal would have no observable growth rate. For a crystal face containing two screw dislocations of opposite sense, joined by a step, the activation energy is still very large when their distance apart is less than the diameter of the corresponding critical nucleus; but for any greater separation it is zero. Part IV treats as a ‘co-operative phenomenon’ the temperature dependence of the structure of the surface of a perfect crystal, free from steps at absolute zero. It is shown that such a surface remains practically flat (save for single adsorbed molecules and vacant surface sites) until a transition temperature is reached, at which the roughness of the surface increases very rapidly (‘ surface melting ’). Assuming that the molecules in the surface are all in one or other of two levels, the results of Onsager (1944) for two-dimensional ferromagnets can be applied with little change. The transition temperature is of the order of, or higher than, the melting-point for crystal faces with nearest neighbour interactions in both directions (e.g. (100) faces of simple cubic or (111) or (100) faces of face-centred cubic crystals). When the interactions are of second nearest neighbour type in one direction (e.g. (110) faces of s.c. or f.c.c. crystals), the transition temperature is lower and corresponds to a surface melting of second nearest neighbour bonds. The error introduced by the assumed restriction to two available levels is investigated by a generalization of Bethe’s method (1935) to larger numbers of levels. This method gives an anomalous result for the two-level problem. The calculated transition temperature decreases substantially on going from two to three levels, but remains practically the same for larger numbers.

4,432 citations