scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth.

01 May 1986-Journal of Experimental Medicine (Rockefeller University Press)-Vol. 163, Iss: 5, pp 1037-1050
TL;DR: TGF-beta may be an important antigen-nonspecific regulator of human T cell proliferation, and important in T cell interaction with other cell types whose cellular functions are modulated by TGF- beta.
Abstract: This study examines the potential role of transforming growth factor beta (TGF-beta) in the regulation of human T lymphocyte proliferation, and proposes that TGF-beta is an important autoregulatory lymphokine that limits T lymphocyte clonal expansion, and that TGF-beta production by T lymphocytes is important in T cell interactions with other cell types. TGF-beta was shown to inhibit IL-2-dependent T cell proliferation. The addition of picograms amounts of TGF-beta to cultures of IL-2-stimulated human T lymphocytes suppressed DNA synthesis by 60-80%. A potential mechanism of this inhibition was found. TGF-beta inhibited IL-2-induced upregulation of the IL-2 and transferrin receptors. Specific high-affinity receptors for TGF-beta were found both on resting and activated T cells. Cellular activation was shown to result in a five- to sixfold increase in the number of TGF-beta receptors on a per cell basis, without a change in the affinity of the receptor. Finally, the observations that activated T cells produce TGF-beta mRNA and that TGF-beta biologic activity is present in supernatants conditioned by activated T cells is strong evidence that T cells themselves are a source of TGF-beta. Resting T cells were found to have low to undetectable levels of TGF-beta mRNA, while PHA activation resulted in a rapid increase in TGF-beta mRNA levels (within 2 h). Both T4 and T8 lymphocytes were found to make mRNA for TGF-beta upon activation. Using both a soft agar assay and a competitive binding assay, TGF-beta biologic activity was found in supernatants conditioned by T cells; T cell activation resulted in a 10-50-fold increase in TGF-beta production. Thus, TGF-beta may be an important antigen-nonspecific regulator of human T cell proliferation, and important in T cell interaction with other cell types whose cellular functions are modulated by TGF-beta.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
22 Oct 1992-Nature
TL;DR: TGF-β1-deficient mice may be valuable models for human immune and inflammatory disorders, including autoimmune diseases, transplant rejection and graft versus host reactions.
Abstract: Transforming growth factor-beta 1 (TGF-beta 1) is a multifunctional growth factor that has profound regulatory effects on many developmental and physiological processes. Disruption of the TGF-beta 1 gene by homologous recombination in murine embryonic stem cells enables mice to be generated that carry the disrupted allele. Animals homozygous for the mutated TGF-beta 1 allele show no gross developmental abnormalities, but about 20 days after birth they succumb to a wasting syndrome accompanied by a multifocal, mixed inflammatory cell response and tissue necrosis, leading to organ failure and death. TGF-beta 1-deficient mice may be valuable models for human immune and inflammatory disorders, including autoimmune diseases, transplant rejection and graft versus host reactions.

3,010 citations

Journal ArticleDOI
TL;DR: Overall these studies demonstrate that analysis of cytokine expression and regulation may yield effective therapeutic targets in inflammatory disease.
Abstract: Analysis of cytokine mRNA and protein in rheumatoid arthritis tissue revealed that many proinflammatory cytokines such as TNF alpha, IL-1, IL-6, GM-CSF, and chemokines such as IL-8 are abundant in all patients regardless of therapy. This is compensated to some degree by the increased production of anti-inflammatory cytokines such as IL-10 and TGF beta and cytokine inhibitors such as IL-1ra and soluble TNF-R. However, this upregulation in homeostatic regulatory mechanisms is not sufficient as these are unable to neutralize all the TNF alpha and IL-1 produced. In rheumatoid joint cell cultures that spontaneously produce IL-1, TNF alpha was the major dominant regulator of IL-1. Subsequently, other proinflammatory cytokines were also inhibited if TNF alpha was neutralized, leading to the new concept that the proinflammatory cytokines were linked in a network with TNF alpha at its apex. This led to the hypothesis that TNF alpha was of major importance in rheumatoid arthritis and was a therapeutic target. This hypothesis has been successfully tested in animal models, of, for example, collagen-induced arthritis, and these studies have provided the rationale for clinical trials of anti-TNF alpha therapy in patients with long-standing rheumatoid arthritis. Several clinical trials using a chimeric anti-TNF alpha antibody have shown marked clinical benefit, verifying the hypothesis that TNF alpha is of major importance in rheumatoid arthritis. Retreatment studies have also shown benefit in repeated relapses, indicating that the disease remains TNF alpha dependent. Overall these studies demonstrate that analysis of cytokine expression and regulation may yield effective therapeutic targets in inflammatory disease.

2,485 citations

Journal ArticleDOI
TL;DR: The role of TGF-β is evaluated as both a tumor suppressor pathway and a promoter of tumor progression and invasion and the positive and negative effects of T GF-β in carcinogenesis are attempted.
Abstract: Epithelial and hematopoietic cells have a high turnover and their progenitor cells divide continuously, making them prime targets for genetic and epigenetic changes that lead to cell transformation and tumorigenesis. The consequent changes in cell behavior and responsiveness result not only from genetic alterations such as activation of oncogenes or inactivation of tumor suppressor genes, but also from altered production of, or responsiveness to, stimulatory or inhibitory growth and differentiation factors. Among these, transforming growth factor β (TGF-β) and its signaling effectors act as key determinants of carcinoma cell behavior. The autocrine and paracrine effects of TGF-β on tumor cells and the tumor micro-environment exert both positive and negative influences on cancer development. Accordingly, the TGF-β signaling pathway has been considered as both a tumor suppressor pathway and a promoter of tumor progression and invasion. Here we evaluate the role of TGF-β in tumor development and attempt to reconcile the positive and negative effects of TGF-β in carcinogenesis.

2,132 citations


Cites background from "Production of transforming growth f..."

  • ...This repression was presumably elaborated by the ability of TGF-β to inhibit the expression and function of interleukin 2 (IL-2) and IL-2 receptor...

    [...]

Journal ArticleDOI
TL;DR: This review highlights the findings that have advanced the understanding of TGF-beta in the immune system and in disease.
Abstract: Transforming growth factor-beta (TGF-beta) is a potent regulatory cytokine with diverse effects on hemopoietic cells. The pivotal function of TGF-beta in the immune system is to maintain tolerance via the regulation of lymphocyte proliferation, differentiation, and survival. In addition, TGF-beta controls the initiation and resolution of inflammatory responses through the regulation of chemotaxis, activation, and survival of lymphocytes, natural killer cells, dendritic cells, macrophages, mast cells, and granulocytes. The regulatory activity of TGF-beta is modulated by the cell differentiation state and by the presence of inflammatory cytokines and costimulatory molecules. Collectively, TGF-beta inhibits the development of immunopathology to self or nonharmful antigens without compromising immune responses to pathogens. This review highlights the findings that have advanced our understanding of TGF-beta in the immune system and in disease.

2,084 citations

Journal ArticleDOI
TL;DR: The accumulated knowledge gained through extensive in vitro functional analyses and from in vivo animal models supports the concept that clinical therapies based on modulation of this cytokine represent an important new approach to the treatment of disorders of immune function.
Abstract: The transforming growth factor beta (TGF-beta) family of proteins are a set of pleiotropic secreted signaling molecules with unique and potent immunoregulatory properties. TGF-beta 1 is produced by every leukocyte lineage, including lymphocytes, macrophages, and dendritic cells, and its expression serves in both autocrine and paracrine modes to control the differentiation, proliferation, and state of activation of these immune cells. TGF-beta can modulate expression of adhesion molecules, provide a chemotactic gradient for leukocytes and other cells participating in an inflammatory response, and inhibit them once they have become activated. Increased production and activation of latent TGF-beta have been linked to immune defects associated with malignancy and autoimmune disorders, to susceptibility to opportunistic infection, and to the fibrotic complications associated with chronic inflammatory conditions. In addition to these roles in disease pathogenesis, TGF-beta is now established as a principal mediator of oral tolerance and can be recognized as the sine qua non of a unique subset of effector cells that are induced in this process. The accumulated knowledge gained through extensive in vitro functional analyses and from in vivo animal models, including newly established TGF-beta gene knockout and transgenic mice, supports the concept that clinical therapies based on modulation of this cytokine represent an important new approach to the treatment of disorders of immune function.

1,872 citations

References
More filters
Journal ArticleDOI
TL;DR: Further data are obtained to support a role for TGF-beta as an intrinsic mediator of collagen formation: conditioned media obtained from activated human tonsillar T lymphocytes contain greatly elevated levels of T GF-beta compared tomedia obtained from unactivated lymphocytes.
Abstract: Transforming growth factor type beta (TGF-beta), when injected subcutaneously in newborn mice, causes formation of granulation tissue (induction of angiogenesis and activation of fibroblasts to produce collagen) at the site of injection. These effects occur within 2-3 days at dose levels than 1 microgram. Parallel in vitro studies show that TGF-beta causes marked increase of either proline or leucine incorporation into collagen in either an NRK rat fibroblast cell line or early passage human dermal fibroblasts. Epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) do not cause these same in vivo and in vitro effects; in both rat and human fibroblast cultures, EGF antagonizes the effects of TGF-beta on collagen formation. We have obtained further data to support a role for TGF-beta as an intrinsic mediator of collagen formation: conditioned media obtained from activated human tonsillar T lymphocytes contain greatly elevated levels of TGF-beta compared to media obtained from unactivated lymphocytes. These activated media markedly stimulate proline incorporation into collagen in NRK cells; this effect is blocked by a specific antibody to TGF-beta. The data are all compatible with the hypothesis that TGF-beta is an important mediator of tissue repair.

2,860 citations

Journal ArticleDOI
01 Aug 1985-Nature
TL;DR: The cDNA sequence indicates that the 112-amino acid monomeric form of the natural TGF-β homodimer is derived proteolytically from a much longer precursor polypeptide which may be secreted.
Abstract: The partial amino-acid sequence of purified human transforming growth factor-beta (TGF-beta) was used to identify a series of cDNA clones encoding the protein. The cDNA sequence indicates that the 112-amino acid monomeric form of the natural TGF-beta homodimer is derived proteolytically from a much longer precursor polypeptide which may be secreted. TGF-beta messenger RNA is synthesized in various normal and transformed cells.

1,716 citations


"Production of transforming growth f..." refers background or methods in this paper

  • ...TGF-/3 has been purified and partially sequenced, and its gene has been cloned (3-7)....

    [...]

  • ...As previously reported (7), the TGF-13 probe recognized an mRNA of ~2....

    [...]

  • ...Previous experiments (7) showed the induction of TGF-/3 mRNA...

    [...]

  • ...The size-fractionated RNA was probed using a 3~P-labelled Eco R1 insert from ~,/3C1 under high stringency conditions (7)....

    [...]

  • ...Using Northern blots, human TGF-/3 mRNA has been identified in a variety of cell types including mitogen-activated nonadherent PBMC (7)....

    [...]

Journal ArticleDOI
TL;DR: The results show that platelets contain a type beta transforming growth factor, which is distinct from platelet-derived growth factor and elicits 50% of its maximal biological response at concentrations less than 5 x 10(-12) M.

1,527 citations

Journal ArticleDOI
TL;DR: The data indicate that the effects of TGF-beta on cells are not a function of the peptide itself, but rather of the total set of growth factors and their receptors that is operant in the cell at a given time.
Abstract: Type beta transforming growth factor (TGF-beta) is a two-chain polypeptide of 25,000 daltons isolated from many tissues, including bovine kidney, human placenta, and human platelets. It has been characterized by its ability to stimulate reversible transformation of nonneoplastic murine fibroblasts, as measured by the formation of colonies of these cells in soft agar (ED50 = 4 pM TGF-beta for NRK fibroblasts). We now show that the response of cells to TGF-beta is bifunctional, in that TGF-beta inhibits the anchorage-dependent growth of NRK fibroblasts and of human tumor cells by increasing cell cycle time. Moreover, the anchorage-independent growth of many human melanoma, lung carcinoma, and breast carcinoma cell lines is inhibited by TGF-beta at concentrations in the same range as those that stimulate colony formation of NRK fibroblasts (average ED50 = 10-30 pM TGF-beta for inhibition). Whereas epidermal growth factor and TGF-beta synergize to induce anchorage-independent growth of NRK fibroblasts, their effects on the growth of A-549 human lung carcinoma cells are antagonistic. The bifunctional response of cells to TGF-beta is further demonstrated in Fischer rat 3T3 fibroblasts transfected with a cellular myc gene. In these cells TGF-beta synergizes with platelet-derived growth factor to stimulate colony formation but inhibits the colony formation induced by epidermal growth factor. The data indicate that the effects of TGF-beta on cells are not a function of the peptide itself, but rather of the total set of growth factors and their receptors that is operant in the cell at a given time.

1,080 citations


"Production of transforming growth f..." refers background in this paper

  • ...Subsequently, TGF-/3 has been shown to have both growth-enhancing and growth-inhibitory properties, and the effect that predominates is dependent upon the particular cell type and the other growth factors present (12, 13)....

    [...]

  • ...The bioassay for TGF-/3 depends upon the ability of TGF-t3 to induce anchorage-independent growth of normal rat kidney (NRK) fibroblasts grown in the presence of 5 ng/ml EGF in soft agar....

    [...]

  • ...For example, TGF-/3 synergized with plateletderived growth factor to stimulate colony formation by a 3T3 cell line that had been transfected with c-myc, but inhibited colony formation by the same cell stimulated with EGF (12)....

    [...]

  • ...This assay relies upon the ability of TGF-/3 to enhance the growth of NRK cells in agar in the presence of EGF (10)....

    [...]

Journal ArticleDOI
TL;DR: The results indicate that TCGF interacts with activated T cells via a receptor through which it initiates the T cell proliferative response, and the relative magnitude of T cell proliferation induced by a given concentration of TCGF closely paralleled the fraction of occupied receptor sites.
Abstract: To examine directly the hypothesis that T cell growth factor (TCGF) interacts with target cells in a fashion similar to polypeptide hormones, the binding of radiolabeled TCGF to various cell populations was investigated. The results indicate that TCGF interacts with activated T cells via a receptor through which it initiates the T cell proliferative response. Internally radiolabeled TCGF, prepared from a human T leukemia cell line and purified by gel filtration and isoelectric focusing, retained biological activity and was uniform with respect to size and charge. Binding of radiolabeled TCGF to TCGF-dependent cytolytic T cells occurred rapidly (within 15 rain at 37 degrees C) and was both saturable and largely reversible. In addition, at 37 degrees C, a receptor- and lysosome-dependent degradation of TCGF occurred. Radiolabeled TCGF binding was specific for activated, TCGF-responsive T cells. Whereas unstimulated lymphocytes of human or murine origin and lipopolysaccharide-activated B cell blasts expressed few if any detectable binding sites, lectin- or alloantigen-activated cells had easily detectable binding sites. Moreover, compared with lectin- or alloantigen-activated T cells, long-term TCGF-dependent cytolytic and helper T cell lines and TCGF-dependent neo-plastic T cell lines bound TCGF with a similar affinity (dissociation constant of 5-25 pM) and expressed a similar number of receptor sites per cell (5,000-15,000). In contrast, a number of TCGF-independent cell lines of T cell, B cell, or myeloid origin did not bind detectable quantities of radiolabeled TCGF. Binding of radiolabeled TCGF to TCGF-responsive cells was specific, in that among several growth factors and polypeptide hormones tested, only TCGF competed for binding. Finally, the relative magnitude of T cell proliferation induced by a given concentration of TCGF closely paralleled the fraction of occupied receptor sites. As the extent of T cell clonal expansion depends on TCGF and on the TCGF receptor, the dissection of the molecular events surrounding the interaction of TCGF and its receptor that these studies permit, should provide new insight into the hormonelike regulation of the immune response by this lymphokine.

1,003 citations


"Production of transforming growth f..." refers background in this paper

  • ...This interaction results in the expression of IL-2-R, and the synthesis and secretion of IL-2 (28, 29)....

    [...]

Related Papers (5)