scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer.

01 Aug 1988-Nature Biotechnology (Nature Publishing Group)-Vol. 6, Iss: 8, pp 915-922
TL;DR: Progeny from two transgenic soybean plants demonstrated co-segregation of kanamycin resistance and either GUS expression or glyphosate tolerance in a 3:1 ratio indicating a single insert inherited in a Mendelian fashion.
Abstract: Transgenic soybean plants have been produced using an Agrobacterium-mediated gene transfer system. This procedure relied on a regeneration protocol in which shoot organogenesis was induced on cotyledons of soybean genotypes selected for susceptibility to Agrobacterium. Cotyledon explants were inoculated with Agrobacterium tumefaciens pTiT37-SE harboring pMON9749 (conferring kanamycin resistance and β-glucuronidase “GUS” activity) or pTiT37-SE∷pMON894 (conferring kanamycin resistance and glyphosate tolerance) and cultured on shoot induction medium containing kanamycin. Plantlets were tested for gene insertion 3–4 months post-inoculation. Approximately 6% of the shoots (8 plants to date) produced on the kanamycin-selected cotyledons were transgenic based on assays for GUS expression, kanamycin resistance or glyphosate tolerance. Progeny from two of these plants demonstrated co-segregation of kanamycin resistance and either GUS expression or glyphosate tolerance in a 3:1 ratio indicating a single insert inherited in a Mendelian fashion.
Citations
More filters
Journal ArticleDOI
TL;DR: A rapid Agrobacterium tumefaciens-mediated transformation system for wheat was developed using freshly isolated immature embryos, precultured immature embryos and embryogenic calli as explants, and stable integration, expression, and inheritance of the transgenes were confirmed by molecular and genetic analysis.
Abstract: A rapid Agrobacterium tumefaciens-mediated transformation system for wheat was developed using freshly isolated immature embryos, precultured immature embryos, and embryogenic calli as explants. The explants were inoculated with a disarmed A. tumefaciens strain C58 (ABI) harboring the binary vector pMON18365 containing the [beta]-glucuronidase gene with an intron, and a selectable marker, the neomycin phosphotransferase II gene. Various factors were found to influence the transfer-DNA delivery efficiency, such as explant tissue and surfactants present in the inoculation medium. The inoculated immature embryos or embryogenic calli were selected on G418-containing media. Transgenic plants were regenerated from all three types of explants. The total time required from inoculation to the establishment of plants in soil was 2.5 to 3 months. So far, more than 100 transgenic events have been produced. Almost all transformants were morphologically normal. Stable integration, expression, and inheritance of the transgenes were confirmed by molecular and genetic analysis. One to five copies of the transgene were integrated into the wheat genome without rearrangement. Approximately 35% of the transgenic plants received a single copy of the transgenes based on Southern analysis of 26 events. Transgenes in T1 progeny segregated in a Mendelian fashion in most of the transgenic plants.

743 citations

Patent
28 Aug 1991
TL;DR: In this article, genes encoding Class II EPSPS enzymes are disclosed, which are useful in producing transformed bacteria and plants which are tolerant to glyphosate herbicide, and a method for selectively controlling weeds in a planted transgenic crop field.
Abstract: Genes encoding Class II EPSPS enzymes are disclosed. The genes are useful in producing transformed bacteria and plants which are tolerant to glyphosate herbicide. Class II EPSPS genes share little homology with known, Class I EPSPS genes, and do not hybridize to probes from Class I EPSPS's. The Class II EPSPS enzymes are characterized by being more kinetically efficient than Class I EPSPS's in the presence of glyphosate. Plants transformed with Class II EPSPS genes are also disclosed as well as a method for selectively controlling weeds in a planted transgenic crop field.

716 citations

Patent
08 Aug 1990
TL;DR: In this article, a reproducible system for the production of stable, genetically transformed maize cells, and to methods of selecting cells that have been transformed, is described. But the system is not applicable to the field of agriculture.
Abstract: This invention relates to a reproducible system for the production of stable, genetically transformed maize cells, and to methods of selecting cells that have been transformed. One method of selection disclosed employs the Streptomyces bar gene introduced by microprojectile bombardment into embryogenic maize cells which were grown in suspension cultures, followed by exposure to the herbicide bialaphos. The methods of achieving stable transformation disclosed herein include tissue culture methods and media, methods for the bombardment of recipient cells with the desired transforming DNA, and methods of growing fertile plants from the transformed cells. This invention also relates to the transformed cells and seeds and to the fertile plants grown from the transformed cells and to their pollen.

652 citations

Journal ArticleDOI
TL;DR: A member of the tribe Loteae, Lotus japonicus (Regel) Larsen is proposed as a candidate and stable transformation is demonstrated by segregation of the hygromycin selectable marker after selfing of transgenic plants or test crosses.
Abstract: Summary In the Leguminosae plant family, few of the individual plant species have been used for plant molecular biology research. Among the species investigated no obvious representative ‘model’ legume has emerged. Here a member of the tribe Loteae, Lotus japonicus (Regel) Larsen is proposed as a candidate. L. japonicus is a diploid, autogamous species, with a good seed set, and a generation time of approximately 3 months. The haploid genome consists of six chromosomes and the genome size was estimated to be relatively small (0.5 pg per haploid complement). L. japonicus is susceptible to Agrobacterium tumefaciens and transgenic plants can be regenerated after hygromycin or kanamycin selection. Tissue culture conditions and procedures for transformation and regeneration are described. Stable transformation is demonstrated by segregation of the hygromycin selectable marker after selfing of transgenic plants or test crosses. The possibility of mapping polymorphic DNA markers inbred lines of L. japonicus is also discussed.

603 citations

Journal ArticleDOI
TL;DR: A method for expressing insecticidal protein structural genes in cotton plant genomes by utilizing an Agrobacterium tumefaciens Ti plasmid-based transformation system and the modified Ti Plasmid is used to transform recipient plant cells.
Abstract: We have expressed truncated forms of the insect control protein genes of Bacillus thuringiensis var. kurstaki HD-1(cryIA(b) and HD-73 (cryIA(c) in cotton plants at levels that provided effective control of agronomically important lepidopteran insect pests. Total protection from insect damage of leaf tissue from these plants was observed in laboratory assays when tested with two lepidopteran insects, an insect relatively sensitive to the B.t.k. insect control protein, Trichoplusia ni (cabbage looper) and an insect that is 100 fold less sensitive, Spodoptera exigua (beet armyworm). Whole plants, assayed under conditions of high insect pressure with Heliothis zea (cotton bollworm) showed effective square and boll protection. Immunological analysis of the cotton plants indicated that the insect control protein represented 0.05% to 0.1% of the total soluble protein. We view these results as a major step towards the agricultural use of genetically modified plants with insect resistance in this valuable, high acreage crop.

588 citations

References
More filters
Journal ArticleDOI
TL;DR: This assay is very reproducible and rapid with the dye binding process virtually complete in approximately 2 min with good color stability for 1 hr with little or no interference from cations such as sodium or potassium nor from carbohydrates such as sucrose.

225,085 citations

Journal ArticleDOI
TL;DR: In vivo redox biosensing resolves the spatiotemporal dynamics of compartmental responses to local ROS generation and provide a basis for understanding how compartment-specific redox dynamics may operate in retrograde signaling and stress 67 acclimation in plants.
Abstract: In experiments with tobacco tissue cultured on White's modified medium (basal meditmi hi Tnhles 1 and 2) supplemenk'd with kiticthi and hidoleacctic acid, a slrikin^' fourlo (ive-told intTease iu yield was ohtaitu-d within a three to Tour week j^rowth period on addition of an aqtteotis exlrarl of tobacco leaves (Fi^'ures 1 and 2). Subse(iueutly it was found Ihiit this jnoniotiou oi' f^rowih was due mainly though nol entirely to inorj^auic rather than organic con.stitttenls in the extract. In the isolation of Rrowth factors from plant tissues and other sources inorj '̂anic salts are fre(|uently carried along with fhe organic fraclioits. When tissue cultures are used for bioassays, therefore, il is necessary lo lake into account increases in growth which may result from nutrient elements or other known constituents of the medium which may he present in the te.st materials. To minimize interference trom rontaminaitis of this type, an altempt has heen made to de\\eh)p a nieditmi with such adequate supplies of all re(iuired tnineral nutrients and cotntnott orgattic cottslitueitls that no apprecial»le change in growth rate or yield will result from the inlroduclion of additional amounts in the range ordinarily expected to be present in tnaterials to be assayed. As a point of referetice for this work some of the culture media in mc)st common current use will he cotisidered briefly. For ease of comparis4)n Iheir mineral compositions are listed in Tables 1 and 2. White's nutrient .solution, designed originally for excised root cultures, was based on Uspeuski and Uspetiskaia's medium for algae and Trelease and Trelease's micronutrieni solution. This medium also was employed successfully in the original cttltivation of callus from the tobacco Iiybrid Nicotiana gtauca x A', tanijadorffii, atitl as further modified by White in 194̂ ^ and by others it has been used for the

63,098 citations

Journal ArticleDOI
TL;DR: A technique for conveniently radiolabeling DNA restriction endonuclease fragments to high specific activity is described, and these "oligolabeled" DNA fragments serve as efficient probes in filter hybridization experiments.

23,324 citations

01 Jan 1984
TL;DR: In this article, a technique for conveniently radiolabeling DNA restriction endonuclease fragments to high specific activity is described, where DNA fragments are purified from agarose gels directly by ethanol precipitation and are then denatured and labeled with the large fragment of DNA polymerase I, using random oligonucleotides as primers.
Abstract: A technique for conveniently radiolabeling DNA restriction endonuclease fragments to high specific activity is described. DNA fragments are purified from agarose gels directly by ethanol precipitation and are then denatured and labeled with the large fragment of DNA polymerase I, using random oligonucleotides as primers. Over 70% of the precursor triphosphate is routinely incorporated into complementary DNA, and specific activities of over 10(9) dpm/microgram of DNA can be obtained using relatively small amounts of precursor. These "oligolabeled" DNA fragments serve as efficient probes in filter hybridization experiments.

21,435 citations

Journal ArticleDOI
TL;DR: A method is presented for the rapid isolation of high molecular weight plant DNA which is free of contaminants which interfere with complete digestion by restriction endonucleases, and which yields total cellular DNA.
Abstract: A method is presented for the rapid isolation of high molecular weight plant DNA (50,000 base pairs or more in length) which is free of contaminants which interfere with complete digestion by restriction endonucleases. The procedure yields total cellular DNA (i.e. nuclear, chloroplast, and mitochondrial DNA). The technique is ideal for the rapid isolation of small amounts of DNA from many different species and is also useful for large scale isolations.

10,481 citations