scispace - formally typeset

Journal ArticleDOI

Programmable photonic signal processor chip for radiofrequency applications

20 Oct 2015-Vol. 2, Iss: 10, pp 854-859

TL;DR: This paper provides the first ever demonstration of the disruptive approach to tackle the need to provide photonic integrated circuits with equal levels of function flexibility as compared with their electronic counterparts, and shows that a programmable chip with a free spectral range of 14 GHz enables RF filters featuring continuous, over-two-octave frequency coverage.
Abstract: Integrated microwave photonics, an emerging technology combining radio frequency (RF) engineering and integrated photonics, has great potential to be adopted for wideband analog processing applications. However, it has been a challenge to provide photonic integrated circuits with equal levels of function flexibility as compared with their electronic counterparts. Here, we introduce a disruptive approach to tackle this need, which is analogous to an electronic field-programmable gate array. We use a grid of tunable Mach–Zehnder couplers interconnected in a two-dimensional mesh network, each working as a photonic processing unit. Such a device is able to be programmed into many different circuit topologies and thereby provide a diversity of functions. This paper provides, to the best of our knowledge, the first ever demonstration of this concept and shows that a programmable chip with a free spectral range of 14 GHz enables RF filters featuring continuous, over-two-octave frequency coverage, i.e., 1.6–6 GHz, and variable passband shaping ranging from a 55 dB extinction notch filter to a 1.6 GHz bandwidth flat-top filter.
Topics: Photonic integrated circuit (58%), Bandwidth (signal processing) (58%), Passband (56%), Gate array (55%), Analog signal processing (54%)
Citations
More filters

Journal ArticleDOI
01 Feb 2019-Nature Photonics
TL;DR: The maturity of high-volume semiconductor processing has finally enabled the complete integration of light sources, modulators and detectors in a single microwave photonic processor chip and has ushered the creation of a complex signal processor with multifunctionality and reconfiguration similar to electronic devices.
Abstract: Recent advances in photonic integration have propelled microwave photonic technologies to new heights. The ability to interface hybrid material platforms to enhance light–matter interactions has led to the development of ultra-small and high-bandwidth electro-optic modulators, low-noise frequency synthesizers and chip signal processors with orders-of-magnitude enhanced spectral resolution. On the other hand, the maturity of high-volume semiconductor processing has finally enabled the complete integration of light sources, modulators and detectors in a single microwave photonic processor chip and has ushered the creation of a complex signal processor with multifunctionality and reconfigurability similar to electronic devices. Here, we review these recent advances and discuss the impact of these new frontiers for short- and long-term applications in communications and information processing. We also take a look at the future perspectives at the intersection of integrated microwave photonics and other fields including quantum and neuromorphic photonics. This Review discusses recent advances of microwave photonic technologies and their applications in communications and information processing, as well as their potential implementations in quantum and neuromorphic photonics.

322 citations


Journal ArticleDOI
07 Aug 2017-Scientific Reports
TL;DR: First observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks are reported, and a mathematical isomorphism between the silicon photonics circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis.
Abstract: Photonic systems for high-performance information processing have attracted renewed interest. Neuromorphic silicon photonics has the potential to integrate processing functions that vastly exceed the capabilities of electronics. We report first observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks. A mathematical isomorphism between the silicon photonic circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis. Exploiting this isomorphism, a simulated 24-node silicon photonic neural network is programmed using “neural compiler” to solve a differential system emulation task. A 294-fold acceleration against a conventional benchmark is predicted. We also propose and derive power consumption analysis for modulator-class neurons that, as opposed to laser-class neurons, are compatible with silicon photonic platforms. At increased scale, Neuromorphic silicon photonics could access new regimes of ultrafast information processing for radio, control, and scientific computing.

293 citations


Journal ArticleDOI
Daniel Pérez1, Ivana Gasulla1, Lee Crudgington2, David J. Thomson2  +6 moreInstitutions (3)
TL;DR: A reconfigurable but simple silicon waveguide mesh with different functionalities with a simple seven hexagonal cell structure is demonstrated, which can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks, and quantum information systems.
Abstract: Integrated photonics changes the scaling laws of information and communication systems offering architectural choices that combine photonics with electronics to optimize performance, power, footprint, and cost. Application-specific photonic integrated circuits, where particular circuits/chips are designed to optimally perform particular functionalities, require a considerable number of design and fabrication iterations leading to long development times. A different approach inspired by electronic Field Programmable Gate Arrays is the programmable photonic processor, where a common hardware implemented by a two-dimensional photonic waveguide mesh realizes different functionalities through programming. Here, we report the demonstration of such reconfigurable waveguide mesh in silicon. We demonstrate over 20 different functionalities with a simple seven hexagonal cell structure, which can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks, and quantum information systems. Our work is an important step toward this paradigm.Integrated optical circuits today are typically designed for a few special functionalities and require complex design and development procedures. Here, the authors demonstrate a reconfigurable but simple silicon waveguide mesh with different functionalities.

241 citations


Journal ArticleDOI
Abstract: An overview of the most recent developments and improvements to the low-loss TriPleX Si3N4 waveguide technology is presented in this paper The TriPleX platform provides a suite of waveguide geometries (box, double stripe, symmetric single stripe, and asymmetric double stripe) that can be combined to design complex functional circuits, but more important are manufactured in a single monolithic process flow to create a compact photonic integrated circuit All functionalities of the integrated circuit are constructed using standard basic building blocks, namely straight and bent waveguides, splitters/combiners and couplers, spot size converters, and phase tuning elements The basic functionalities that have been realized are: ring resonators and Mach–Zehnder interferometer filters, tunable delay elements, and waveguide switches Combination of these basic functionalities evolves into more complex functions such as higher order filters, beamforming networks, and fully programmable architectures Introduction of the active InP chip platform in a combination with the TriPleX will introduce light generation, modulation, and detection to the low-loss platform This hybrid integration strategy enables fabrication of tunable lasers, fully integrated filters, and optical beamforming networks

189 citations


Posted Content
17 Nov 2012-arXiv: Optics
Abstract: Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A particular aspect that recently gains significant interests is the use of photonic integrated circuit (PIC) technology in the MWP field for enhanced functionalities and robustness as well as the reduction of size, weight, cost and power consumption. This article reviews the recent advances in this emerging field which is dubbed as integrated microwave photonics. Key integrated MWP technologies are reviewed and the prospective of the field is discussed.

179 citations


References
More filters

Journal ArticleDOI
19 May 2005-Nature
TL;DR: Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures, and here a high-speed electro-optical modulator in compact silicon structures is experimentally demonstrated.
Abstract: Metal interconnections are expected to become the limiting factor for the performance of electronic systems as transistors continue to shrink in size. Replacing them by optical interconnections, at different levels ranging from rack-to-rack down to chip-to-chip and intra-chip interconnections, could provide the low power dissipation, low latencies and high bandwidths that are needed. The implementation of optical interconnections relies on the development of micro-optical devices that are integrated with the microelectronics on chips. Recent demonstrations of silicon low-loss waveguides, light emitters, amplifiers and lasers approach this goal, but a small silicon electro-optic modulator with a size small enough for chip-scale integration has not yet been demonstrated. Here we experimentally demonstrate a high-speed electro-optical modulator in compact silicon structures. The modulator is based on a resonant light-confining structure that enhances the sensitivity of light to small changes in refractive index of the silicon and also enables high-speed operation. The modulator is 12 micrometres in diameter, three orders of magnitude smaller than previously demonstrated. Electro-optic modulators are one of the most critical components in optoelectronic integration, and decreasing their size may enable novel chip architectures.

2,207 citations


"Programmable photonic signal proces..." refers background in this paper

  • ...However, this could be improved significantly by the advancing of modulator technologies, where state-of-the-art devices have demonstrated modulation speeds of the order of hundreds of picoseconds [51]....

    [...]


Journal ArticleDOI
José Capmany1, Dalma NovakInstitutions (1)
01 Jun 2007-Nature Photonics
Abstract: Microwave photonics, which brings together the worlds of radiofrequency engineering and optoelectronics, has attracted great interest from both the research community and the commercial sector over the past 30 years and is set to have a bright future. The technology makes it possible to have functions in microwave systems that are complex or even not directly possible in the radiofrequency domain and also creates new opportunities for telecommunication networks. Here we introduce the technology to the photonics community and summarize recent research and important applications.

2,034 citations


Journal ArticleDOI
Wim Bogaerts1, P. De Heyn1, T. Van Vaerenbergh1, K. De Vos1  +6 moreInstitutions (1)
Abstract: An overview is presented of the current state-of-the-art in silicon nanophotonic ring resonators. Basic theory of ring resonators is discussed, and applied to the peculiarities of submicron silicon photonic wire waveguides: the small dimensions and tight bend radii, sensitivity to perturbations and the boundary conditions of the fabrication processes. Theory is compared to quantitative measurements. Finally, several of the more promising applications of silicon ring resonators are discussed: filters and optical delay lines, label-free biosensors, and active rings for efficient modulators and even light sources.

1,616 citations


Journal ArticleDOI
Richard A. Soref1Institutions (1)
Abstract: The pace of the development of silicon photonics has quickened since 2004 due to investment by industry and government. Commercial state-of-the-art CMOS silicon-on-insulator (SOI) foundries are now being utilized in a crucial test of 1.55-mum monolithic optoelectronic (OE) integration, a test sponsored by the Defense Advanced Research Projects Agency (DARPA). The preliminary results indicate that the silicon photonics are truly CMOS compatible. RD however, lasing has not yet been attained. The new paradigm for the Si-based photonic and optoelectric integrated circuits is that these chip-scale networks, when suitably designed, will operate at a wavelength anywhere within the broad spectral range of 1.2-100 mum, with cryocooling needed in some cases

1,605 citations


Proceedings Article
Keith J. Williams1Institutions (1)
01 Aug 2012-
Abstract: An overview of analog microwave photonics will be presented. The performance requirements for externally-modulated analog microwave photonic links will be reviewed with specific emphasis placed on modulator efficiency, laser noise, detected photocurrent, and link linearity.

1,270 citations


Network Information
Related Papers (5)
01 Jul 2017

Yichen Shen, Nicholas C. Harris +3 more

01 Jul 2013, Laser & Photonics Reviews

David Marpaung, David Marpaung +5 more

14 Aug 2015, Science

Jacques Carolan, Chris Harrold +15 more

20 Dec 2016

William R. Clements, Peter C. Humphreys +3 more

Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20221
202128
202060
201942
201847
201735