scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Programmable photonic signal processor chip for radiofrequency applications

20 Oct 2015-Vol. 2, Iss: 10, pp 854-859
TL;DR: This paper provides the first ever demonstration of the disruptive approach to tackle the need to provide photonic integrated circuits with equal levels of function flexibility as compared with their electronic counterparts, and shows that a programmable chip with a free spectral range of 14 GHz enables RF filters featuring continuous, over-two-octave frequency coverage.
Abstract: Integrated microwave photonics, an emerging technology combining radio frequency (RF) engineering and integrated photonics, has great potential to be adopted for wideband analog processing applications. However, it has been a challenge to provide photonic integrated circuits with equal levels of function flexibility as compared with their electronic counterparts. Here, we introduce a disruptive approach to tackle this need, which is analogous to an electronic field-programmable gate array. We use a grid of tunable Mach–Zehnder couplers interconnected in a two-dimensional mesh network, each working as a photonic processing unit. Such a device is able to be programmed into many different circuit topologies and thereby provide a diversity of functions. This paper provides, to the best of our knowledge, the first ever demonstration of this concept and shows that a programmable chip with a free spectral range of 14 GHz enables RF filters featuring continuous, over-two-octave frequency coverage, i.e., 1.6–6 GHz, and variable passband shaping ranging from a 55 dB extinction notch filter to a 1.6 GHz bandwidth flat-top filter.
Citations
More filters
Journal ArticleDOI
TL;DR: The maturity of high-volume semiconductor processing has finally enabled the complete integration of light sources, modulators and detectors in a single microwave photonic processor chip and has ushered the creation of a complex signal processor with multifunctionality and reconfiguration similar to electronic devices.
Abstract: Recent advances in photonic integration have propelled microwave photonic technologies to new heights. The ability to interface hybrid material platforms to enhance light–matter interactions has led to the development of ultra-small and high-bandwidth electro-optic modulators, low-noise frequency synthesizers and chip signal processors with orders-of-magnitude enhanced spectral resolution. On the other hand, the maturity of high-volume semiconductor processing has finally enabled the complete integration of light sources, modulators and detectors in a single microwave photonic processor chip and has ushered the creation of a complex signal processor with multifunctionality and reconfigurability similar to electronic devices. Here, we review these recent advances and discuss the impact of these new frontiers for short- and long-term applications in communications and information processing. We also take a look at the future perspectives at the intersection of integrated microwave photonics and other fields including quantum and neuromorphic photonics. This Review discusses recent advances of microwave photonic technologies and their applications in communications and information processing, as well as their potential implementations in quantum and neuromorphic photonics.

532 citations

Journal ArticleDOI
08 Oct 2020-Nature
TL;DR: Generic chips can accelerate the development of future photonic circuits by providing a higher-level platform for prototyping novel optical functionalities without the need for custom chip fabrication.
Abstract: The growing maturity of integrated photonic technology makes it possible to build increasingly large and complex photonic circuits on the surface of a chip. Today, most of these circuits are designed for a specific application, but the increase in complexity has introduced a generation of photonic circuits that can be programmed using software for a wide variety of functions through a mesh of on-chip waveguides, tunable beam couplers and optical phase shifters. Here we discuss the state of this emerging technology, including recent developments in photonic building blocks and circuit architectures, as well as electronic control and programming strategies. We cover possible applications in linear matrix operations, quantum information processing and microwave photonics, and examine how these generic chips can accelerate the development of future photonic circuits by providing a higher-level platform for prototyping novel optical functionalities without the need for custom chip fabrication. The current state of programmable photonic integrated circuits is discussed, including recent developments in their building blocks, circuit architectures, electronic control and programming strategies, as well as different application spaces.

521 citations

Journal ArticleDOI
TL;DR: First observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks are reported, and a mathematical isomorphism between the silicon photonics circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis.
Abstract: Photonic systems for high-performance information processing have attracted renewed interest. Neuromorphic silicon photonics has the potential to integrate processing functions that vastly exceed the capabilities of electronics. We report first observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks. A mathematical isomorphism between the silicon photonic circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis. Exploiting this isomorphism, a simulated 24-node silicon photonic neural network is programmed using “neural compiler” to solve a differential system emulation task. A 294-fold acceleration against a conventional benchmark is predicted. We also propose and derive power consumption analysis for modulator-class neurons that, as opposed to laser-class neurons, are compatible with silicon photonic platforms. At increased scale, Neuromorphic silicon photonics could access new regimes of ultrafast information processing for radio, control, and scientific computing.

518 citations

Journal ArticleDOI
TL;DR: A reconfigurable but simple silicon waveguide mesh with different functionalities with a simple seven hexagonal cell structure is demonstrated, which can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks, and quantum information systems.
Abstract: Integrated photonics changes the scaling laws of information and communication systems offering architectural choices that combine photonics with electronics to optimize performance, power, footprint, and cost. Application-specific photonic integrated circuits, where particular circuits/chips are designed to optimally perform particular functionalities, require a considerable number of design and fabrication iterations leading to long development times. A different approach inspired by electronic Field Programmable Gate Arrays is the programmable photonic processor, where a common hardware implemented by a two-dimensional photonic waveguide mesh realizes different functionalities through programming. Here, we report the demonstration of such reconfigurable waveguide mesh in silicon. We demonstrate over 20 different functionalities with a simple seven hexagonal cell structure, which can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks, and quantum information systems. Our work is an important step toward this paradigm.Integrated optical circuits today are typically designed for a few special functionalities and require complex design and development procedures. Here, the authors demonstrate a reconfigurable but simple silicon waveguide mesh with different functionalities.

358 citations

Journal ArticleDOI
26 Sep 2018
TL;DR: This review paper covers the history of low-loss Si3N4 waveguide technology and a survey of worldwide research in a variety of device and applications as well as the status of Si3n4 foundries.
Abstract: The silicon nitride (Si3N4) planar waveguide platform has enabled a broad class of low-loss planar-integrated devices and chip-scale solutions that benefit from transparency over a wide wavelength range (400–2350 nm) and fabrication using wafer-scale processes. As a complimentary platform to silicon-on-insulator (SOI) and III–V photonics, Si3N4 waveguide technology opens up a new generation of system-on-chip applications not achievable with the other platforms alone. The availability of low-loss waveguides (<1 dB/m) that can handle high optical power can be engineered for linear and nonlinear optical functions, and that support a variety of passive and active building blocks opens new avenues for system-on-chip implementations. As signal bandwidth and data rates continue to increase, the optical circuit functions and complexity made possible with Si3N4 has expanded the practical application of optical signal processing functions that can reduce energy consumption, size and cost over today’s digital electronic solutions. Researchers have been able to push the performance photonic-integrated components beyond other integrated platforms, including ultrahigh Q resonators, optical filters, highly coherent lasers, optical signal processing circuits, nonlinear optical devices, frequency comb generators, and biophotonic system-on-chip. This review paper covers the history of low-loss Si3N4 waveguide technology and a survey of worldwide research in a variety of device and applications as well as the status of Si3N4 foundries.

301 citations


Cites background from "Programmable photonic signal proces..."

  • ...Reprinted with permission from [94], c ©OSA 2015....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this article, two designs of 7th order bandpass Chebyshev filters based on lumped elements and a novel quasi-lumped element resonators were considered and compared with simulations.
Abstract: In this paper we present methods for miniaturization of superconducting filters. We consider two designs of 7th order bandpass Chebyshev filters based on lumped elements and a novel quasi-lumped element resonators. In both designs the area of the filters, with a central frequency of 2-5 GHz, is less than 1.2 mm2. Such small filters can be readily integrated on one board for multi-channel microwave control of superconducting qubits. The filters have been experimentally tested and the results are compared with simulations. The miniaturization resulted in parasitic coupling between resonators and within each resonator that affected primarily stopband and bandwidth increase. The severity of the error depends on the design in particular, and was less prawn when groundplane was used under the inductances of the resonators. The best performance was reached for the quasi-lumped filter with central frequency of 4.5 GHz, quality factor of 100 and 28 dB stopband.

15 citations

Journal ArticleDOI
TL;DR: In this article, an alternative approach to achieve a high-bandwidth RF splitter functionality based on a microwave photonic system was presented, which has an arbitrary amplitude and a phase offset between the two outputs.
Abstract: This letter presents an alternative approach to achieve a high-bandwidth RF splitter functionality based on a microwave photonic system. The proposed approach has an arbitrary amplitude and a phase offset between the two outputs. In addition, it features a simple system architecture and easy tuning mechanism. In the experimental demonstration, an instantaneous RF band from 5 to 20 GHz was shown.

13 citations


Additional excerpts

  • ...3) by controlling the modulator biases [40,41]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a Si3N4 ring resonator notch filter (RRNF) is proposed and experimentally demonstrated as a means for improving the modulation efficiency in 10-GHz radio-over-fiber (RoF) links.
Abstract: Optical carrier reduction via the use of a Si3N4 ring resonator notch filter (RRNF) is proposed and experimentally demonstrated as a means for improving the modulation efficiency in 10-GHz radio-over-fiber (RoF) links. The realized filter is characterized in both the optical and microwave domains and is then exploited in an RoF test bed. Experimental results show a modulation depth improvement of up to 9 dB.

12 citations