scispace - formally typeset
Journal ArticleDOI

Progress in Flow Battery Research and Development

Reads0
Chats0
TLDR
Of the flow battery technologies that have been investigated, the all-vanadium redox flow battery has received the most attention and has shown most promise in various pre-commercial to commercial stationary applications to date, while new developments in hybrid redox fuel cells are promising to lead the way for future applications in mechanically and electrically "refuelable" electric vehicles.
Abstract
The past few decades have shown a rapid and continuous exhaustion of the available energy resources which may lead to serious energy global crises. Researchers have been focusing on developing new and renewable energy resources to meet the increasing fuel demand and reduce greenhouse gas emissions. A surge of research effort is also being directed towards replacing fossil fuel based vehicles with hybrid and electric alternatives. Energy storage is now seen as a critical element in future "smart grid and electric vehicle" applications. Electrochemical energy storage systems offer the best combination of efficiency, cost and flexibility, with redox flow battery systems currently leading the way in this aspect. In this work, a panoramic overview is presented for the various redox flow battery systems and their hybrid alternatives. Relevant published work is reported and critically discussed. A comprehensive study of the available technologies is conducted in terms of technical aspects as well as economic and environmental consequences. Some of the flow battery limitations and technical challenges are also discussed and a range of further research opportunities are presented. Of the flow battery technologies that have been investigated, the all-vanadium redox flow battery has received the most attention and has shown most promise in various pre-commercial to commercial stationary applications to date, while new developments in hybrid redox fuel cells are promising to lead the way for future applications in mechanically and electrically "refuelable" electric vehicles.

read more

Citations
More filters
Journal ArticleDOI

Electrical Energy Storage for the Grid: A Battery of Choices

TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Journal ArticleDOI

Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries

TL;DR: In this article, the authors show that 2 and 5 times higher energy densities are required to meet the performance goals of a future generation of plug-in hybrid-electric vehicles (PHEVs) with a 40-80 mile all-electric range, and all-EVs with a 300-400 mile range, respectively.
Journal ArticleDOI

Redox flow batteries: a review

TL;DR: In this article, the components of RFBs with a focus on understanding the underlying physical processes are examined and various transport and kinetic phenomena are discussed along with the most common redox couples.
Journal ArticleDOI

Electrical energy storage systems: A comparative life cycle cost analysis

TL;DR: In this paper, the authors examined the existing literature in the analysis of life cycle costs of utility-scale electricity storage systems, providing an updated database for the cost elements (capital costs, operational and maintenance costs, and replacement costs).
References
More filters
Book ChapterDOI

I and J

Journal ArticleDOI

Progress in electrical energy storage system: A critical review

TL;DR: In this paper, a review of electrical energy storage technologies for stationary applications is presented, with particular attention paid to pumped hydroelectric storage, compressed air energy storage, battery, flow battery, fuel cell, solar fuel, superconducting magnetic energy storage and thermal energy storage.
Journal ArticleDOI

Recent advances in rechargeable battery materials: a chemist’s perspective

TL;DR: In this tutorial review, the most recent and significant scientific advances in the field of rechargeable batteries, whose performance is dependent on their underlying chemistry, are covered and special emphasis is given to progress in lithium-based technologies.
Journal ArticleDOI

Redox flow cells for energy conversion

TL;DR: In this paper, the authors compared redox flow systems in the light of characteristics such as open circuit potential, power density, energy efficiency, and charge-discharge behavior, and highlighted areas for further research.
Journal ArticleDOI

Energy system analysis of 100% renewable energy systems-The case of Denmark in years 2030 and 2050

TL;DR: In this paper, the authors present the methodology and results of the overall energy system analysis of a 100% renewable energy system, which includes hour by hour computer simulations leading to the design of flexible energy systems with the ability to balance the electricity supply and demand.
Related Papers (5)
Trending Questions (1)
What is the most talked about battery Research lately?

The all-vanadium redox flow battery has received the most attention and shown the most promise in various applications.