scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Progressive Statistics for Studies in Sports Medicine and Exercise Science

TL;DR: A more progressive resource for sample-based studies, meta-analyses, and case studies in sports medicine and exercise science is presented, and forthright advice on controversial or novel issues is offered.
Abstract: Statistical guidelines and expert statements are now available to assist in the analysis and reporting of studies in some biomedical disciplines. We present here a more progressive resource for sample-based studies, meta-analyses, and case studies in sports medicine and exercise science. We offer forthright advice on the following controversial or novel issues: using precision of estimation for inferences about population effects in preference to null-hypothesis testing, which is inadequate for assessing clinical or practical importance; justifying sample size via acceptable precision or confidence for clinical decisions rather than via adequate power for statistical significance; showing SD rather than SEM, to better communicate the magnitude of differences in means and nonuniformity of error; avoiding purely nonparametric analyses, which cannot provide inferences about magnitude and are unnecessary; using regression statistics in validity studies, in preference to the impractical and biased limits of agreement; making greater use of qualitative methods to enrich sample-based quantitative projects; and seeking ethics approval for public access to the depersonalized raw data of a study, to address the need for more scrutiny of research and better meta-analyses. Advice on less contentious issues includes the following: using covariates in linear models to adjust for confounders, to account for individual differences, and to identify potential mechanisms of an effect; using log transformation to deal with nonuniformity of effects and error; identifying and deleting outliers; presenting descriptive, effect, and inferential statistics in appropriate formats; and contending with bias arising from problems with sampling, assignment, blinding, measurement error, and researchers' prejudices. This article should advance the field by stimulating debate, promoting innovative approaches, and serving as a useful checklist for authors, reviewers, and editors.

Summary (1 min read)

Jump to:  and [Summary]

Summary

  • Ement  of  the  identified  shortness  in  piriformis,  soleus,  extern and gluteus maximus adductors.
  • Se realizó un análisis descriptivo de cada una de  las variables cuantitativas, que  incluía  la  media  y  su  correspondiente  desviación  típica,  para  las medidas ROM de  cadera,  rodilla  y  tobillo.
  • Una prueba U de Mann‐Whitney (datos no paramétricos) o t test para muestras independiente (datos paramétricos) fue utilizada para determinar la existencia  de  diferencias  entre  los  valores  medios  de  los  grupos  normal  y  cortedad  en  cada  uno  de  los  movimientos valorados.
  • La influencia de las medidas antropométricas de los taekwondistas, la ejecución bilateral del tests y  el significativo grado de retroversión pélvica resulta en una mayor extensibilidad isquiosural, que  fecta a la validez interna de la medida.
  • Una revisión narrativa, also known as Aspectos fisiológicos de   elite de taekwondo.
  • Rendimiento deportivo sin riesgo de lesión (Tesis Doctoral), also known as Deporte y flexibilidad.
  • The Journal of Sports Medicine and Physical Fitness  (in press).
  • A step by step guide to data analysis using SPSS, also known as SPSS survival manual.

Did you find this useful? Give us your feedback

Content maybe subject to copyright    Report

RevistadeArtesMarcialesAsiáticas
Volumen13(2s),3033~2018
DOI:10.18002/rama.v13i2s.5503
http://revpubli.unileon.es/ojs/index.php/artesmarciales
RAMA
I.S.S.N.2174‐0747
Análisisdelperfildeflexibilidadenjóvenestaekwondistas
Antonio CEJUDO PALOMO
*1
,BlancaSANCIRILOSORIANO
2
, Francisco Javier ROBLES
ALAZÓN
1
,MªdelPilarSAIZDEBARANDA
1
P
1
2
UniversidadMiguelHernándezdeElche(España)
FacultaddeCienciasdelDeporte.UniversidaddeMurcia(España)
ICongresoNacionaldeEntrenadoresdeJudo,Murcia(España),13‐15dejulio,2018
Resumen
El objetivo principal del presente estudio fue determinar el perfil de flexibilidad de la extremidad inferior en atletas
jóvenes de taewwondo, así como identificar los deportistas con cortedad muscular. Para ello, un total de 17
taekwondistasjóvenesparticiparonenelpresenteestudio;sietedeportistaspertenecíanalaselecciónespañolaydieza
laselecciónMurciana.Elrangodemovimientodelosprincipales movimientosde la extremidadinferior fuevalorado
medianteelprotocolo“ROMSPORTyserealizóunanálisisdescriptivodecadauna de lasvariablescuantitativas. Se
aplicólapruebattestdeStudentoWilcoxondependiendodelanormalidaddelosdatos.LosvaloresdeROMdecada
movimientoseclasificaroncomo“normalo“cortedaddeacuerdoconvaloresdereferenciapreviamentejustificados.
Losresultadosdefinencomoperfildeflexibilidaden23ºparapsoas‐iliaco,28ºpara piramidal, 37ºparagemelos,42º
para sóleo, 46º para aductores, 46º para rotadores externos, 56º para rotadores internos, 77º para aductores
monoarticulares,80ºparaisquiosurales,140ºparacuádricepsy145ºparaglúteomayor.LamediciónindividualdelROM
identificócortedadmuscularen11deportistasenpiramidal(64,7%),13deportistasensóleo(76,4%),8deportistasen
rotadoresexternos(47%),14deportistasenaductoresmonoarticulares(82,3%),13deportistasenisquiosural(76,4%),
4 deportistas en cuádriceps (23,5%) y 12 en glúteo mayor (70,5%). Este perfil de flexibilidad puede ayudar a los
profesionales del deporte a marcar objetivos cuantificables en el entrenamiento de la flexibilidad en este deporte. La
inclusióndeesti desidentificadasenpiramidal,
sóleo,rotadores lúteomayor.
ramientos,oelaumentodeladosisdebendeaplicarsesobrelascorteda
externosdecadera,aductoresmonoarticulares,isquiosural,cuádricepsyg
alabrasclave:Deportesdecombate;taekwondo;rangodemovimiento;cortedad;lesión.P
Analysisoftheflexibilityprofileinyoungtaekwondoathletes
Abstract
Themainaimofthisstudywastodeterminetheflexibilityprofileofthelowerextremityinyoungtaekwondoathletes,as
well as identifying athletes with muscle shortness. For this purpose, a total of 17 young taekwondo athletes were
assessed;sevenfromtheSpanishteamandtenfromtheMurciateam.Therangeofmotionofthemainmovementsofthe
lowerextremitywasevaluatedbythe"ROMSPORT"protocolandadescriptiveanalysisofeachofthequantitative
variableswasperformed.AStudentt‐testorarWilcoxontestwasapplieddependingonthenormalitydistributionofthe
data.TheROMvaluesofeachmovementwereclassifiedasnormal”or“shortness”accordingtopreviouslydetermined
reference values. The results define the following flexibility profile:23ºforiliopsoas,28ºforpiriformis,37ºfor
gastrocnemius, 42º for soleus, 46º for adductors, 46º for external rotators, 56º for internal rotators, 77º for
monoarticularadductors,80ºforhamstrings,140ºforquadricepsand145ºforgluteusmaximus.Individualevaluations
identifiedmuscleshortnessinpyramidal(11athletes,64.7%),soleus(13athletes,76.4%),externalrotators(8athletes,
47%),monoarticularadductors(14athletes,82.3%),hamstrings(13athletes,76.4%),quadriceps(4athletes,23.5%)and
gluteusmaximus(12athletes,70.5%).Thisflexibilityprofilecanhelpsportsprofessionalstosetquantifiablegoalsforthe
trainingofflexibilityinthissport.Theinclusionofstretchingexercisesortheincreaseoftheirdosesshouldbeappliedfor
the improv al hip rotators, monoarticular, hamstring,
quadriceps
ement of the identified shortness in piriformis, soleus, extern
andgluteusmaximusadductors.
Keywords:Combatsports;taekwondo;rangeofmovement;tightness;injury.
1.Intro
| 30
©2017UniversidaddeLeón.www.unileon.es
ducción
Eltaekwondoactualmenteesundeportedecombateolímpicoconcercade70millonesde
practicantes en 208 países (World Taekwondo Federation ‐ WTF, 2017). Los deportistas de
taekwondoprecisanunbajoporcentajedegrasacorporal,nivelesmoderadosaaltosdeconsumo

*
Email:acpcejudo@gmail.com

ICongresoNacionaldeEntrenadoresdeJudo,Murcia(España),July13‐15
|31
Rev.ArtesMarcialesAsiát.,11(2s),30‐33~2018
máximo de oxígeno, alta potencia anaeróbica, moderada fuerza explosiva y alta velocidad de
reacción y velocidad gestual en las extremidades inferiores, indispensable para un óptimo
rendimientofísico‐técnicoensituacionesdedefensaycontraataques(Bridgeetal.,2014;Cardozo
etal.,2017).Lanaturalezadinámicadelasaccionestécnicasytácticasdeltaekwondoexigenuna
gran flexibilidad de las extremidades inferiores (Wasik, 2009; Pion, Fransen, Lenoir, & Segers,
2014).Sinembargo,sehanencontradoescasostrabajosqueanalicenelperfildeflexibilidaddelos
practicantes federados de este deporte. Se requiere una investigación más extensa en las
características físicas y fisiológicas de los atletas de taekwondo para determinar el rendimiento
óptimoconmenorpredisposiciónalalesióndeportiva.Elobjetivoprincipaldelpresenteestudio
fuedeterminarelperfildeflexibilidaddelaextremidadinferiorenatletasjóvenesdetaekwondo,
asícom identificarlosatletasconcortedadmuscular.o
2.Método
2.1.Muestra
Untotalde17taekwondistasjóvenesparticiparonenelpresenteestudio;sietedeportistas
(18,1±3,2años;66,6±10,2kg;178±6,8cm)pertenecíanalaselecciónespañolaydiezdeportistasa
laselecciónMurciana(13,1±2,5años;41,3±10,4kg;156,3±9,9cm).
2.2.Procedimiento
Sevaloraronlossiguientesrangosdemovimientoenlaextremidaddominanteyno
dominante, siguiendo la metodología que describen Cejudo, SainzdeBaranda,AyalaySantonja
(2015): extensión de cadera (EC) para el psoas iliaco, aducción de cadera con rodilla flexionada
(ADC) para los músculos abductores (piramidal, glúteo medio y glúteo menor), dorsi‐flexión del
tobillo con rodilla extendida (DFT_RE) para el gemelo, dorsi‐flexión del tobillo con rodilla
flexionada (DFT_RF) para el sóleo, abducción de cadera con rodillaextendida(ABC)paralos
aductores (pectíneo, aductor corto, aductor mediano o largo, aductor mayor y recto interno),
rotacióninternadecadera(RIC)paralosmúsculosrotadoresexternos,rotaciónexternadecadera
(REC)paralosmúsculosrotadoresinternos,abduccióndecaderaconlarodillaflexionada(ABC_CF)
paralosabductoresmonoarticulares(pectíneo,aductorcorto,aductormedianoyaductormayor),
flexióndecaderaconrodillaextendida(FC_RE)paralosisquiosurales,flexiónderodilla(FR)para
elcuádricepsyflexióndecaderaconrodillaflexionada(FC)paraelglúteomayor.Losresultadosde
esta medición definen el perfil de flexibilidad de la extremidad inferior, que forman parte de la
versióncompletadelprotocoloROM‐SPORT(Cejudo,2015).
Despuésdelcalentamiento,yenordenaleatorio,sellevóacaboelprotocolodevaloración
ROMSPORT.Decadamedidaserealizarondosvaloracionesmáximasylamediadeambasseutilizó
en el análisis estadístico. Los valores de ROM se clasificaron como“normal versus cortedad”, de
acuerdoalosvaloresdereferenciapropuestosparaconsiderarqueundeportistaesmáspropenso
asufrirunalesión:13ºenlaEC,30ºenlaADC,30ºenlaDFT_RE,45ºenlaDFT_RF,28ºenlaABC,
45ºenlaRIC,50ºenlaREC,80ºenlaABC_CF,88,1ºenlaFC_RE,132ºenlaFRy135ºenlaFC
(tomado de Cejudo et al., 2017). Por otro lado, los puntos de cortequeseutilizaronparala
asimetríafueron6ºparalosROMpequeños(EC,ADC,DFT_RE,DFT_RF,ABC,REyRIC)y10ºpara
losROMmásgrandes(RT,ABC_CF,FC_RE,FRyFC)(Ellenbeckeretal,2007;López‐Valencianoet
al.,enprensa).
2.3.
Análisisestadístico
Serealizóunanálisisdescriptivodecadaunadelasvariablescuantitativas,queincluíala
mediaysucorrespondientedesviacióntípica,paralasmedidas ROMdecadera,rodillaytobillo.
Paraexaminarlaexistenciadeasimetríaentrelosvaloresdelosladosdominanteynodominante,
seutilizólapruebattestdeStudent(siladistribucióndelosdatosfuenormal)ylaprueba de
Wilcoxon(siladistribucióndelosdatosnofuenormal).Además,secalculóeltamañodelefectode
Cohendetodoslosresultados,ylamagnituddelefectoerainterpretado de acuerdo con los

ICongresoNacionaldeEntrenadoresdeJudo,Murcia(España),13‐15dejulio,2018
|32
Rev.ArtesMarcialesAsiát.,13(2s),30‐33~2018
criteriosdeHopkins,Marshall,BatterhamyHanin(2009),enelcualuntamañodeefectomenosde
0,2,de0,2a0,59,de0,6a1,19,de1,20a2,00,de 2,00a3,99ysuperiora4,00eraconsiderado
comotrivial,pequeño,moderado,grande,muygrandeyextremadamentegrande,respectivamente.
Losautoresdecidieronarbitrariamente“moderado”comoelnivelmínimodeefectorelevantecon
aplicaciónprácticaenlosresultados.UnapruebaUdeMann‐Whitney(datosnoparamétricos)ot
testparamuestrasindependiente(datosparamétricos)fueutilizadaparadeterminarlaexistencia
dediferenciasentrelosvaloresmediosdelosgruposnormalycortedad en cada uno de los
movimientosvalorados.Eltamañodelefectodecadavariableseanalizóutilizandoelestadísticor
dePearsonentrelosgrupos(Cortedadvsnormal)(0,0‐0,39=efectobajo,0,40,69efectomedioy
,7‐1efectoalto)(Pallant,2007).0
3.Resu osltad
Los resultados definen como perfil de flexibilidad en 23º para psoas‐iliaco, 28º para
piramidal,37ºparagemelos,42ºparasóleo,46ºparaaductores,46ºpararotadoresexternos,56º
para rotadores internos, 77º para aductores monoarticulares, 80º para isquiosurales, 140º para
cuádricepsy145ºparaglúteomayor.LamediciónindividualdelROMidentificócortedadmuscular
a11deportistasenpiramidal(64,7%),13deportistasensóleo(76,4%),8deportistasenrotadores
externos (47%), 14 deportistas en aductores monoarticulares, 13deportistasenisquiosural
76,4%),4deportistasencuádriceps(23,5%)y12englúteomayor(70,5%).(
4.Discusión
EltaekwondoesundeportedinámicoenlaquelosgestostécnicosrequierenungranROM,
especialmente en las extremidades inferiores (Wasik, 2009). A pesardelaimportanciadeesta
cualidadfísica enelrendimientofísico‐técnicodeestedeporte,sonescasos losestudios quehan
valoradolaflexibilidadentaekwondistas.Además,losautoresde estos trabajos han utilizado
especialmente la prueba de valoración lineal (centímetros) “test distancia de dedos planta”para
medir la extensibilidad isquiosural. Los valores encontrados en este test para taekwondistas
internacionales sénior oscilaron entre 36‐36.9 cm para los hombres y 35.2‐56.6 cm para las
mujeres (Campos et al., 2012; Heller et al., 1998; Markovic, Misigoj‐Durakovic y Trninic, 2005;
Rivera,Rivera‐BrownyFrontera,1998).Estosvaloresnodebensercomparadosconeltestangular
FC_REdelpresenteestudio,aunqueambostestsmidenlaextensibilidaddelamismamusculatura.
Lainfluenciadelasmedidasantropotricasdelostaekwondistas,laejecuciónbilateraldeltestsy
elsignificativogradoderetroversiónpélvicaresultaenunamayorextensibilidadisquiosural,que
fectaalavalidezinternadelamedida.a
5.Conclusiones
Esteperfildeflexibilidadpuedeayudaralosprofesionalesdeldeporteamarcarobjetivos
cuantificablesenelentrenamientodelaflexibilidadenestedeporte.Lainclusióndeestiramientos,
oelaumentodeladosisdebendeaplicarsesobrelascortedadesidentificadasenpiramidal,sóleo,
otadoresexternosdecadera,aductoresmonoarticulares,isquiosural,cuádricepsyglúteomayor.r
Referencias
Bridge,C.A.,FerreiradaSilvaSantos,J.,Chaabène,H.,Pieter,W.,&Franchini,E.(2014).Physicaland
physiological profiles of taekwondo athletes. Sports Medicine, 44(6), 713‐33. doi:
10.1007/s40279‐014‐0159‐9
Campos,F.A.,Bertuzzi,R.,Dourado,A.C.,Santos,V.G.F.,&Franchini,E.(2012).Energydemandsin
taekwondo athletes during combat simulation. European Journal of Applied Physiology,
112(4),1221‐1228.doi:10.1007/s00421‐011‐2071‐4


ICongresoNacionaldeEntrenadoresdeJudo,Murcia(España),July13‐15
|33
Rev.ArtesMarcialesAsiát.,11(2s),30‐33~2018
Cardozo,L.A.,Vera‐Rivera,D.A.,Conde‐Cabezas,O.A.yYánez,C.A.(2017).Aspectosfisiológicosde
elitedetaekwondo:Unarevisiónnarrativa.RevistaEspañoladedeportistas EducaciónFísica
yDeportes,(418),35‐46.
A. 20Cejudo, ( 15).Deporteyflexibilidad:Rendimientodeportivosinriesgodelesión(TesisDoctoral).
UniversidaddeMurcia,SanJavier,España.
Cejudo, A., Sainz de Baranda, P., Ayala, F. & Santonja, F. (2015). Test‐retest reliability of seven
commonclinicaltestsforassessinglowerextremitymuscleflexibilityinfutsalandhandball
players.PhysicalTherapyinSport,16(2),107‐113.doi:10.1016/j.ptsp.2014.05.004
i Cejudo,A.,SainzdeBaranda,P.,Ayala,F.&Santonja,F.(2017).Clasificac ón delosvaloresderango
demovimientodelaextremidadinferiorenjugadoresdefútbolsala.SPORTTK,6(1),41‐50.
Ellenbecker, T.S., Ellenbecker, G.A., Roetert, E.P., Silva, R.T., Keuter, G. & Sperling, F. (2007).
pDescriptiveprofileofhi rotationrangeofmotioninelitetennisplayersandprofessional
baseballpitchers.TheAmericanJournalofSportsMedicine,35(8),1371‐1376.
Heller, J., Peric, T., Dlouha, R., Kohlíková, E., Melichna, J.,&Nováková,H.(1998).Physiological
profilesofmaleandfemaletaekwondo(ITF)blackbelts. JournalofSports Sciences,16(3),
243‐249.doi:10.1080/026404198366768
Hopkins,W.,Marshall,S.,Batterham,A.M.&Hanin,J.(2009).Progressivestatisticsfor studiesin
sportsmedicineandexercisescience.Medicine & Science in Sports & Exercise, 41(1),3‐12.
doi:10.1249/MSS.0b013e31818cb278

López‐Valenciano,A.,AyalaF.,VeraGarcia,F.J.,DeSteCroix,M.,Hernández‐Sánchez,S.,Ruiz‐Pérez,
I.,Cejudo,A.&Santonja,F.(enprensa).Comprehensiveprofileofhip,kneeandankleranges
ofmotioninprofessionalsoccerplayers.The JournalofSportsMedicineandPhysicalFitness
(inpress).
goj‐Durakovic, M., & Trninic, S. (2005). Fitness profile of elite Cro
pologicum,29(1),93‐9.
Markovic, G., Misi atian female
taekwondoathletes.Collegiumantro
Pallant,J.(2007).SPSSsurvivalmanual:astepbystepguidetodataanalysisusing SPSS.3rdedition.
CrowsNest,N.S.W.:Allen&Unwin.
Pion,J.,Fransen,J.,Lenoir,M.,&Segers,V.(2014).Thevalueofnon‐sport‐specificcharacteristics
fortalentorientationinyoungmalejudo,karateandtaekwondoathletes.ArchivesofBudo,
10,147‐150.
Frontera, s
l
Rivera,M.,Rivera‐Brown,A.,& W.(1998).Healthrelatedphysicalfitne scharacteristics
ofelitePuertoRicanathletes.Journa of Strength&ConditioningResearch,12(3),199‐203.
ialWasik, J. (2009). Structure of movement of a turning technique used in the event of spec
techniquesinTaekwon‐doITF.ArchivesofBudo
,5,111‐115.
orldTaekwondoFederation.(2017).WTFwebsite.RecuperadodeW www.worldtaekwondo.org

Citations
More filters
Journal ArticleDOI
TL;DR: The different aspects of HIT programming are discussed, from work/relief interval manipulation to the selection of exercise mode, using different examples of training cycles from different sports, with continued reference to T@$$ \dot{V} $$O2max and cardiovascular responses.
Abstract: High-intensity interval training (HIT), in a variety of forms, is today one of the most effective means of improving cardiorespiratory and metabolic function and, in turn, the physical performance of athletes. HIT involves repeated short-to-long bouts of rather high-intensity exercise interspersed with recovery periods. For team and racquet sport players, the inclusion of sprints and all-out efforts into HIT programmes has also been shown to be an effective practice. It is believed that an optimal stimulus to elicit both maximal cardiovascular and peripheral adaptations is one where athletes spend at least several minutes per session in their 'red zone,' which generally means reaching at least 90% of their maximal oxygen uptake (VO2max). While use of HIT is not the only approach to improve physiological parameters and performance, there has been a growth in interest by the sport science community for characterizing training protocols that allow athletes to maintain long periods of time above 90% of VO2max (T@VO2max). In addition to T@VO2max, other physiological variables should also be considered to fully characterize the training stimulus when programming HIT, including cardiovascular work, anaerobic glycolytic energy contribution and acute neuromuscular load and musculoskeletal strain. Prescription for HIT consists of the manipulation of up to nine variables, which include the work interval intensity and duration, relief interval intensity and duration, exercise modality, number of repetitions, number of series, as well as the between-series recovery duration and intensity. The manipulation of any of these variables can affect the acute physiological responses to HIT. This article is Part I of a subsequent II-part review and will discuss the different aspects of HIT programming, from work/relief interval manipulation to the selection of exercise mode, using different examples of training cycles from different sports, with continued reference to T@VO2max and cardiovascular responses. Additional programming and periodization considerations will also be discussed with respect to other variables such as anaerobic glycolytic system contribution (as inferred from blood lactate accumulation), neuromuscular load and musculoskeletal strain (Part II).

761 citations


Additional excerpts

  • ...2 and[2 are considered ‘small’, ‘medium’, ‘large’ and ‘very large’ effects, respectively [42]....

    [...]

Journal ArticleDOI
TL;DR: In this part of the review, the different aspects of HIT programming are discussed, from work/relief interval manipulation to HIT periodization, using different examples of training cycles from different sports, with continued reference to the cardiorespiratory adaptations outlined in Part I.
Abstract: High-intensity interval training (HIT) is a well-known, time-efficient training method for improving cardiorespiratory and metabolic function and, in turn, physical performance in athletes. HIT involves repeated short (<45 s) to long (2–4 min) bouts of rather high-intensity exercise interspersed with recovery periods (refer to the previously published first part of this review). While athletes have used ‘classical’ HIT formats for nearly a century (e.g. repetitions of 30 s of exercise interspersed with 30 s of rest, or 2–4-min interval repetitions ran at high but still submaximal intensities), there is today a surge of research interest focused on examining the effects of short sprints and all-out efforts, both in the field and in the laboratory. Prescription of HIT consists of the manipulation of at least nine variables (e.g. work interval intensity and duration, relief interval intensity and duration, exercise modality, number of repetitions, number of series, between-series recovery duration and intensity); any of which has a likely effect on the acute physiological response. Manipulating HIT appropriately is important, not only with respect to the expected middle- to long-term physiological and performance adaptations, but also to maximize daily and/or weekly training periodization. Cardiopulmonary responses are typically the first variables to consider when programming HIT (refer to Part I). However, anaerobic glycolytic energy contribution and neuromuscular load should also be considered to maximize the training outcome. Contrasting HIT formats that elicit similar (and maximal) cardiorespiratory responses have been associated with distinctly different anaerobic energy contributions. The high locomotor speed/power requirements of HIT (i.e. ≥95 % of the minimal velocity/power that elicits maximal oxygen uptake [v/p $$ \dot{V} $$ O2max] to 100 % of maximal sprinting speed or power) and the accumulation of high-training volumes at high-exercise intensity (runners can cover up to 6–8 km at v $$ \dot{V} $$ O2max per session) can cause significant strain on the neuromuscular/musculoskeletal system. For athletes training twice a day, and/or in team sport players training a number of metabolic and neuromuscular systems within a weekly microcycle, this added physiological strain should be considered in light of the other physical and technical/tactical sessions, so as to avoid overload and optimize adaptation (i.e. maximize a given training stimulus and minimize musculoskeletal pain and/or injury risk). In this part of the review, the different aspects of HIT programming are discussed, from work/relief interval manipulation to HIT periodization, using different examples of training cycles from different sports, with continued reference to the cardiorespiratory adaptations outlined in Part I, as well as to anaerobic glycolytic contribution and neuromuscular/musculoskeletal load.

631 citations


Cites background from "Progressive Statistics for Studies ..."

  • ...2 and [2 are considered small, medium-large and very-large effects, respectively [30]....

    [...]

Journal ArticleDOI
TL;DR: This review contends that most of the contradictory findings are related to methodological inconsistencies and/or misinterpretation of the data rather than to limitations of heart rate measures to accurately inform on training status, and provides evidence that measures derived from 5-min recordings of resting and submaximal exercise heart rate are likely the most useful monitoring tools.
Abstract: Monitoring an athlete's physiological status in response to various types and volumes of (aerobic-oriented) training can provide useful information for optimizing training programs. Measures of resting, exercise and recovery heart rate (HR) are receiving increasing interest for monitoring fatigue, fitness and endurance performance responses, which has direct implications for adjusting training load 1) daily during specific training blocks and 2) throughout the competitive season. These measures are still not widely implemented to monitor athletes’ responses to training load, probably because of apparent contradictory findings in the literature. In this review I contend that most of the contradictory findings are related to methodological inconsistencies and/or misinterpretation of the data rather than to limitations of heart rate measures to accurately inform on training status. I also provide evidence that measures derived from 5-min (almost daily) recordings of resting (indices capturing beat-to-beat changes in HR, reflecting parasympathetic activity) and submaximal exercise (30- to 60-s average) HR are likely the most useful monitoring tools. For appropriate interpretation at the individual level, changes in a given measure should be interpreted by taking into account the error of measurement and the smallest important change of the measure, as well as the training context (training phase, load and intensity distribution). The decision to use a given measure should be based upon the level of information that is required by the athlete, the marker’s sensitivity to changes in training status and the practical constrains required for the measurements. However, measures of HR cannot inform on all aspects of wellness, fatigue and performance, so their use in combination with daily training logs, psychometric questionnaires and non-invasive, cost-effective performance tests such as a countermovement jump may offer a complete solution to monitor training status

590 citations


Cites background from "Progressive Statistics for Studies ..."

  • ...…to practitioners is whether the training-related change in HR measures could be important, i.e., whether their magnitude is actually greater than the smallest practical or meaningful change/effect (the so-called smallest worthwhile change, SWC) (Batterham and Hopkins, 2006; Hopkins et al., 2009)....

    [...]

  • ...For groups of athletes, an attractive option to assess meaningful changes in a given variable and/or compare the changes in variables of different metrics is to use standardization (Hopkins et al., 2009)....

    [...]

  • ...…in performance between competitions (expressed as a CV) is generally considered as the SWC, while Frontiers in Physiology | Exercise Physiology February 2014 | Volume 5 | Article 73 | 12 0.9, 1.6, and 2.5 refer to moderate, large, and very large changes (Hopkins, 2004; Hopkins et al., 2009)....

    [...]

  • ...…principle (i.e., changes in the mean divided by the between-athlete SD of baseline test data), and their magnitude (in standardized unit) can then be compared with magnitude thresholds considered a small (>0.2–0.6), moderate (>0.6–1.2), large (>1.2–2) or very large (>2) (Hopkins et al., 2009)....

    [...]

  • ...MAS: maximal aerobic speed. around the average change) and the SWC and are taken into account to make the final interpretation (Hopkins et al., 2009)....

    [...]

Journal ArticleDOI
TL;DR: The meta-analysed effect of endurance training on VO2max was a possibly large beneficial effect and a likely moderate greater additional increase for subjects with lower baseline fitness, when compared with no-exercise controls.
Abstract: Enhancing cardiovascular fitness can lead to substantial health benefits. High-intensity interval training (HIT) is an efficient way to develop cardiovascular fitness, yet comparisons between this type of training and traditional endurance training are equivocal. Our objective was to meta-analyse the effects of endurance training and HIT on the maximal oxygen consumption (VO2max) of healthy, young to middle-aged adults. Six electronic databases were searched (MEDLINE, PubMed, SPORTDiscus, Web of Science, CINAHL and Google Scholar) for original research articles. A search was conducted and search terms included ‘high intensity’, ‘HIT’, ‘sprint interval training’, ‘endurance training’, ‘peak oxygen uptake’, and ‘VO2max’. Inclusion criteria were controlled trials, healthy adults aged 18–45 years, training duration ≥2 weeks, VO2max assessed pre- and post-training. Twenty-eight studies met the inclusion criteria and were included in the meta-analysis. This resulted in 723 participants with a mean ± standard deviation (SD) age and initial fitness of 25.1 ± 5 years and 40.8 ± 7.9 mL·kg−1·min−1, respectively. We made probabilistic magnitude-based inferences for meta-analysed effects based on standardised thresholds for small, moderate and large changes (0.2, 0.6 and 1.2, respectively) derived from between-subject SDs for baseline VO2max. The meta-analysed effect of endurance training on VO2max was a possibly large beneficial effect (4.9 mL·kg−1·min−1; 95 % confidence limits ±1.4 mL·kg−1·min−1), when compared with no-exercise controls. A possibly moderate additional increase was observed for typically younger subjects (2.4 mL·kg−1·min−1; ±2.1 mL·kg−1·min−1) and interventions of longer duration (2.2 mL·kg−1·min−1; ±3.0 mL·kg−1·min−1), and a small additional improvement for subjects with lower baseline fitness (1.4 mL·kg−1·min−1; ±2.0 mL·kg−1·min−1). When compared with no-exercise controls, there was likely a large beneficial effect of HIT (5.5 mL·kg−1·min−1; ±1.2 mL·kg−1·min−1), with a likely moderate greater additional increase for subjects with lower baseline fitness (3.2 mL·kg−1·min−1; ±1.9 mL·kg−1·min−1) and interventions of longer duration (3.0 mL·kg−1·min−1; ±1.9 mL·kg−1·min−1), and a small lesser effect for typically longer HIT repetitions (−1.8 mL·kg−1·min−1; ±2.7 mL·kg−1·min−1). The modifying effects of age (0.8 mL·kg−1·min−1; ±2.1 mL·kg−1·min−1) and work/rest ratio (0.5 mL·kg−1·min−1; ±1.6 mL·kg−1·min−1) were unclear. When compared with endurance training, there was a possibly small beneficial effect for HIT (1.2 mL·kg−1·min−1; ±0.9 mL·kg−1·min−1) with small additional improvements for typically longer HIT repetitions (2.2 mL·kg−1·min−1; ±2.1 mL·kg−1·min−1), older subjects (1.8 mL·kg−1·min−1; ±1.7 mL·kg−1·min−1), interventions of longer duration (1.7 mL·kg−1·min−1; ±1.7 mL·kg−1·min−1), greater work/rest ratio (1.6 mL·kg−1·min−1; ±1.5 mL·kg−1·min−1) and lower baseline fitness (0.8 mL·kg−1·min−1; ±1.3 mL·kg−1·min−1). Endurance training and HIT both elicit large improvements in the VO2max of healthy, young to middle-aged adults, with the gains in VO2max being greater following HIT when compared with endurance training.

586 citations


Cites background or methods from "Progressive Statistics for Studies ..."

  • ...2 standard deviations (SDs), respectively [24] and derived by averaging appropriate between-subject variances for baseline VO2max....

    [...]

  • ...the difference between a typically low and a typically high value) [24]....

    [...]

  • ...These probabilities were then used to make a qualitative probabilistic inference about the overall effect [24]....

    [...]

Journal ArticleDOI
TL;DR: This work presents a meta-analyses of the determinants of obesity, diet, and physical activity in men and women over a 12-month period and shows clear patterns of decline in the proportion of men who smoke and those who refrain from doing so.
Abstract: Bibliography DOI https://doi.org/10.1055/a-1015-3123 Published online: 15.10.2019 Int J Sports Med 2019; 40: 813–817 © Georg Thieme Verlag KG Stuttgart · New York ISSN 0172-4622 Correspondence D. J. Harriss Research Institute for Sport and Exercise Sciences Liverpool John Moores University Tom Reilly Building Byrom Street Campus Webster Street L3 3AF Liverpool United Kingdom Tel.: + 44/15/19 04 62 36, Fax: + 44/15/12 07 32 24 d.harriss@ljmu.ac.uk

563 citations


Cites background from "Progressive Statistics for Studies ..."

  • ...For the importance of a study to be judged, it is imperative that the minimal clinically/practically important magnitude of change or difference is rationalised clearly and reported by authors [24]....

    [...]

References
More filters
Book
01 Dec 1969
TL;DR: The concepts of power analysis are discussed in this paper, where Chi-square Tests for Goodness of Fit and Contingency Tables, t-Test for Means, and Sign Test are used.
Abstract: Contents: Prefaces. The Concepts of Power Analysis. The t-Test for Means. The Significance of a Product Moment rs (subscript s). Differences Between Correlation Coefficients. The Test That a Proportion is .50 and the Sign Test. Differences Between Proportions. Chi-Square Tests for Goodness of Fit and Contingency Tables. The Analysis of Variance and Covariance. Multiple Regression and Correlation Analysis. Set Correlation and Multivariate Methods. Some Issues in Power Analysis. Computational Procedures.

115,069 citations


"Progressive Statistics for Studies ..." refers background in this paper

  • ...5 for small, moderate, and large correlation coefficients suggested by Cohen (7) can be augmented with 0....

    [...]

  • ...Thresholds of 0.1, 0.3, and 0.5 for small, moderate, and large correlation coefficients suggested by Cohen (7) can be augmented with 0.7 and 0.9 for very large and extremely large; these translate approximately into 0.20, 0.60, 1.20, 2.0, and 4.0 for standardized differences in means (the mean difference divided by the between-subject SD) and into risk differences of 10%, 30%, 50%, 70%, and 90% (newstats.org/effectmag.html)....

    [...]

  • ...The use of two SD to gauge the effect of a continuous predictor ensures congruence between Cohen’s threshold magnitudes for correlations and standardized differences (Note 1)....

    [...]

Journal ArticleDOI
19 Apr 2000-JAMA
TL;DR: A checklist contains specifications for reporting of meta-analyses of observational studies in epidemiology, including background, search strategy, methods, results, discussion, and conclusion should improve the usefulness ofMeta-an analyses for authors, reviewers, editors, readers, and decision makers.
Abstract: ObjectiveBecause of the pressure for timely, informed decisions in public health and clinical practice and the explosion of information in the scientific literature, research results must be synthesized. Meta-analyses are increasingly used to address this problem, and they often evaluate observational studies. A workshop was held in Atlanta, Ga, in April 1997, to examine the reporting of meta-analyses of observational studies and to make recommendations to aid authors, reviewers, editors, and readers.ParticipantsTwenty-seven participants were selected by a steering committee, based on expertise in clinical practice, trials, statistics, epidemiology, social sciences, and biomedical editing. Deliberations of the workshop were open to other interested scientists. Funding for this activity was provided by the Centers for Disease Control and Prevention.EvidenceWe conducted a systematic review of the published literature on the conduct and reporting of meta-analyses in observational studies using MEDLINE, Educational Research Information Center (ERIC), PsycLIT, and the Current Index to Statistics. We also examined reference lists of the 32 studies retrieved and contacted experts in the field. Participants were assigned to small-group discussions on the subjects of bias, searching and abstracting, heterogeneity, study categorization, and statistical methods.Consensus ProcessFrom the material presented at the workshop, the authors developed a checklist summarizing recommendations for reporting meta-analyses of observational studies. The checklist and supporting evidence were circulated to all conference attendees and additional experts. All suggestions for revisions were addressed.ConclusionsThe proposed checklist contains specifications for reporting of meta-analyses of observational studies in epidemiology, including background, search strategy, methods, results, discussion, and conclusion. Use of the checklist should improve the usefulness of meta-analyses for authors, reviewers, editors, readers, and decision makers. An evaluation plan is suggested and research areas are explored.

17,663 citations


"Progressive Statistics for Studies ..." refers methods in this paper

  • ...MOOSE: Meta-analysis of Observational Studies in Epidemiology (25)....

    [...]

  • ...Observational (nonexperimental) studies STROBE: Strengthening the Reporting of Observational Studies in Epidemiology (27,28)....

    [...]

Journal ArticleDOI
TL;DR: The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) initiative developed recommendations on what should be included in an accurate and complete report of an observational study, resulting in a checklist of 22 items (the STROBE statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles.
Abstract: Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalisability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control, and cross-sectional studies. We convened a 2-day workshop in September 2004, with methodologists, researchers, and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles. 18 items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available on the Web sites of PLoS Medicine, Annals of Internal Medicine, and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.

15,454 citations

Journal ArticleDOI
TL;DR: The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study, resulting in a checklist of 22 items that relate to the title, abstract, introduction, methods, results, and discussion sections of articles.
Abstract: Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study’s generalizability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control and cross-sectional studies. We convened a two-day workshop, in September 2004, with methodologists, researchers and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results and discussion sections of articles. Eighteen items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available on the web sites of PLoS Medicine, Annals of Internal Medicine and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.

13,974 citations


"Progressive Statistics for Studies ..." refers background in this paper

  • ...MOOSE: Meta-analysis of Observational Studies in Epidemiology (25)....

    [...]

  • ...Observational (nonexperimental) studies STROBE: Strengthening the Reporting of Observational Studies in Epidemiology (27,28)....

    [...]

Frequently Asked Questions (1)
Q1. What are the contributions in this paper?

The main aim of this study was to determine the flexibility profile of the lower extremity in young taekwondo athletes, as well as identifying athletes with muscle shortness. The results define the following flexibility profile: 23o for iliopsoas, 28o for piriformis, 37o for gastrocnemius, 42o for soleus, 46o for adductors, 46o for external rotators, 56o for internal rotators, 77o for monoarticular adductors, 80o for hamstrings, 140o for quadriceps and 145o for gluteus maximus.