scispace - formally typeset
Open accessJournal ArticleDOI: 10.1103/PHYSREVB.50.17953

Projector augmented-wave method

15 Dec 1994-Physical Review B (American Physical Society)-Vol. 50, Iss: 24, pp 17953-17979
Abstract: An approach for electronic structure calculations is described that generalizes both the pseudopotential method and the linear augmented-plane-wave (LAPW) method in a natural way. The method allows high-quality first-principles molecular-dynamics calculations to be performed using the original fictitious Lagrangian approach of Car and Parrinello. Like the LAPW method it can be used to treat first-row and transition-metal elements with affordable effort and provides access to the full wave function. The augmentation procedure is generalized in that partial-wave expansions are not determined by the value and the derivative of the envelope function at some muffin-tin radius, but rather by the overlap with localized projector functions. The pseudopotential approach based on generalized separable pseudopotentials can be regained by a simple approximation.

...read more

Citations
  More

Journal ArticleDOI: 10.1016/0927-0256(96)00008-0
Georg Kresse1, Jürgen Furthmüller2Institutions (2)
Abstract: We present a detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set. We will discuss: (a) partial occupancies within the framework of the linear tetrahedron method and the finite temperature density-functional theory, (b) iterative methods for the diagonalization of the Kohn-Sham Hamiltonian and a discussion of an efficient iterative method based on the ideas of Pulay's residual minimization, which is close to an order Natoms2 scaling even for relatively large systems, (c) efficient Broyden-like and Pulay-like mixing methods for the charge density including a new special ‘preconditioning’ optimized for a plane-wave basis set, (d) conjugate gradient methods for minimizing the electronic free energy with respect to all degrees of freedom simultaneously. We have implemented these algorithms within a powerful package called VAMP (Vienna ab-initio molecular-dynamics package). The program and the techniques have been used successfully for a large number of different systems (liquid and amorphous semiconductors, liquid simple and transition metals, metallic and semi-conducting surfaces, phonons in simple metals, transition metals and semiconductors) and turned out to be very reliable.

...read more

Topics: Projector augmented wave method (55%), Conjugate gradient method (55%), Iterative method (54%) ...read more

40,008 Citations


Open accessJournal ArticleDOI: 10.1088/0953-8984/21/39/395502
Paolo Giannozzi1, Stefano Baroni2, Stefano Baroni3, Nicola Bonini4  +37 moreInstitutions (13)
Abstract: QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

...read more

Topics: Quantum ESPRESSO (66%), Espresso (56%)

15,767 Citations


Open accessJournal ArticleDOI: 10.1038/NNANO.2014.35
Likai Li1, Yijun Yu1, Guo Jun Ye2, Q. Q. Ge1  +5 moreInstitutions (2)
Abstract: Two-dimensional crystals have emerged as a class of materials that may impact future electronic technologies. Experimentally identifying and characterizing new functional two-dimensional materials is challenging, but also potentially rewarding. Here, we fabricate field-effect transistors based on few-layer black phosphorus crystals with thickness down to a few nanometres. Reliable transistor performance is achieved at room temperature in samples thinner than 7.5 nm, with drain current modulation on the order of 10(5) and well-developed current saturation in the I-V characteristics. The charge-carrier mobility is found to be thickness-dependent, with the highest values up to ∼ 1,000 cm(2) V(-1) s(-1) obtained for a thickness of ∼ 10 nm. Our results demonstrate the potential of black phosphorus thin crystals as a new two-dimensional material for applications in nanoelectronic devices.

...read more

Topics: Phosphorene (55%), Field-effect transistor (53%)

5,801 Citations


Journal ArticleDOI: 10.1016/J.COMMATSCI.2005.04.010
Abstract: An algorithm is presented for carrying out decomposition of electronic charge density into atomic contributions. As suggested by Bader [R. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, New York, 1990], space is divided up into atomic regions where the dividing surfaces are at a minimum in the charge density, i.e. the gradient of the charge density is zero along the surface normal. Instead of explicitly finding and representing the dividing surfaces, which is a challenging task, our algorithm assigns each point on a regular (x,y,z) grid to one of the regions by following a steepest ascent path on the grid. The computational work required to analyze a given charge density grid is approximately 50 arithmetic operations per grid point. The work scales linearly with the number of grid points and is essentially independent of the number of atoms in the system. The algorithm is robust and insensitive to the topology of molecular bonding. In addition to two test problems involving a water molecule and NaCl crystal, the algorithm has been used to estimate the electrical activity of a cluster of boron atoms in a silicon crystal. The highly stable three-atom boron cluster, B3I is found to have a charge of ! 1.5 e, which suggests approximately 50% reduction in electrical activity as compared with three substitutional boron atoms.

...read more

Topics: Charge density (59%), Atoms in molecules (59%), Cluster (physics) (53%) ...read more

5,741 Citations


Open accessJournal ArticleDOI: 10.1016/J.CPC.2010.04.018
Marat Valiev1, Eric J. Bylaska1, Niranjan Govind1, Karol Kowalski1  +7 moreInstitutions (3)
Abstract: The latest release of NWChem delivers an open-source computational chemistry package with extensive capabilities for large scale simulations of chemical and biological systems. Utilizing a common computational framework, diverse theoretical descriptions can be used to provide the best solution for a given scientific problem. Scalable parallel implementations and modular software design enable efficient utilization of current computational architectures. This paper provides an overview of NWChem focusing primarily on the core theoretical modules provided by the code and their parallel performance.

...read more

Topics: Global Arrays (55%)

4,125 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
2022294
20216,710
20206,327
20195,546
20185,003
20174,076