scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Promises and Challenges in Photocatalysis

28 May 2021-Vol. 1
About: The article was published on 2021-05-28 and is currently open access. It has received 20 citations till now. The article focuses on the topics: Photocatalysis.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , density functional theory (DFT) study of polythiophene/Zinc oxide (PTh/ZnO) nanocomposite with high photocatalytic performance and stability which exhibits superior degradation of alizarine dye under the visible light condition with interaction energy of -149.55 kcal/mol.
Abstract: Incorporating nanostructured photocatalysts in polymers is a strategic way to obtain novel water purification systems. Here, we present density functional theory (DFT) study of Polythiophene/Zinc oxide (PTh/ZnO) nanocomposite with high photocatalytic performance and stability which exhibits superior degradation of alizarine dye under the visible light condition with interaction energy of -149.55 kcal/mol between conducting polymer (PTh) and metal oxide, with PTh sponsoring more number of electrons to the conduction band of ZnO. The electrical and optical properties of optimized geometries of PTh/ZnO nanocomposite were studied by frontier molecular orbital analysis, natural bond orbital (NBO) charge simulation, natural electronic configuration, and UV-vis absorption spectra. The modulation of the energy band gap (∽ 2.60 eV) and exciton binding energy (∽ 0.36 eV) causes visible light absorption and hence enhances the photodegradation activity of PTh/ZnO. NBO analysis evidences the electron accepting behavior of ZnO in the composites as it withdraws electron cloud density of about 0.14e from the polymer unit.

10 citations

Journal ArticleDOI
TL;DR: In this article , the authors identified short (up to 2030), medium- (2030-2040) and long-term (2040-2050) objectives for catalysis.

7 citations

Journal ArticleDOI
TL;DR: In this paper , the authors describe cobalt-based MOFs in the context of light-triggered processes, including dye degradation, water oxidation and splitting, carbon dioxide reduction, in addition to the oxidation of organic compounds.
Abstract: Nowadays, materials with great potential for environmental protection are being sought. Metal–organic frameworks, in particular those with cobalt species as active sites, have drawn considerable interest due to their excellent properties. This review focuses on describing cobalt-based MOFs in the context of light-triggered processes, including dye degradation, water oxidation and splitting, carbon dioxide reduction, in addition to the oxidation of organic compounds. With the use of Co-based MOFs (e.g., ZIF-67, Co-MOF-74) as photocatalysts in these reactions, even over 90% degradation efficiencies of various dyes (e.g., methylene blue) can be achieved. Co-based MOFs also show high TOF/TON values in water splitting processes and CO2-to-CO conversion. Additionally, the majority of alcohols may be converted to aldehydes with efficiencies exceeding 90% and high selectivity. Since Co-based MOFs are effective photocatalysts, they can be applied in the elimination of toxic contaminants that endanger the environment.

7 citations

Journal ArticleDOI
TL;DR: In this paper , an electrospun composite nanofiber embedded with n-type CuS and p-type ZnS in partially carbonized-PVP nanofibers, so-called Z-type-CuS/ZnS@PVP, was demonstrated to reduce 4-nitrophenol to 4aminophenol and degrade the mixed dyes of methylene blue, rhodamine B, and methyl orange.
Abstract: Environmental pollution has been the most critical issue on earth due to many factors, particularly the industrial chemical waste, which can be detoxified by photocatalytic methods. In this study, we demonstrate the fabrication of an electrospun composite nanofiber embedded with n-type CuS and p-type ZnS in partially carbonized-PVP nanofibers, so-called Z-type-CuS/ZnS@PVP nanofibers, to reduce 4-nitrophenol to 4-aminophenol and degrade the mixed dyes of methylene blue, rhodamine B, and methyl orange. The Z-type-CuS/ZnS@PVP nanofibers were prepared by an electrospinning method, followed by annealing at 180 °C and 400 °C under N2 atmosphere. As-prepared CuS/ZnS@PVP nanofibrous mats were characterized by SEM, XRD, PL, DRS, TPC, and EIS analyses. The results revealed that Z-type CuS/ZnS@PVP nanofibers have enhanced optical and electrochemical properties as compared with the CuS@PVP and ZnS@PVP nanofibers. Likewise, the Z-scheme was more beneficial for promoting the electron transfer as well as for delaying the photocarrier recombination. For the applications of CuS/ZnS@PVP nanofibers, the reduction of 4-nitrophenol to 4-aminophenol occurred within 2 h and the mixed-dye degradation occurred in 90 min in 5% MeOH aqueous solution under solar light irradiation. The CuS/ZnS@PVP nanofibers also possessed excellent stability, with more than 95% remaining after five recycle runs. The photocatalytic mechanism reaction is proposed, in which the mechanism was initiated by the adsorption of organic pollutants on the nanofiber matrix, followed by the photoreaction due to e− and h+ in CuS/ZnS after light irradiation as well as from the generated radical species. Lastly, the inorganic photocatalyst embedded in the nanofiber matrix offered an easy recovery process with excellent degradation performance as well.

5 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the current approaches for the heterogeneous photocatalytic reduction of CO2 on TiO2 and other metal oxide, oxynitride, sulfide, and phosphide semiconductors.
Abstract: Rising atmospheric levels of carbon dioxide and the depletion of fossil fuel reserves raise serious concerns about the ensuing effects on the global climate and future energy supply. Utilizing the abundant solar energy to convert CO2 into fuels such as methane or methanol could address both problems simultaneously as well as provide a convenient means of energy storage. In this Review, current approaches for the heterogeneous photocatalytic reduction of CO2 on TiO2 and other metal oxide, oxynitride, sulfide, and phosphide semiconductors are presented. Research in this field is focused primarily on the development of novel nanostructured photocatalytic materials and on the investigation of the mechanism of the process, from light absorption through charge separation and transport to CO2 reduction pathways. The measures used to quantify the efficiency of the process are also discussed in detail.

2,273 citations

Journal ArticleDOI
TL;DR: Composite Photocatalysts Nan Zhang,‚‡ Min-Quan Yang,†,‡ Siqi Liu,*,‡ Yugang Sun,* and Yi-Jun Xu*,† are authors of this paper.
Abstract: Composite Photocatalysts Nan Zhang,†,‡ Min-Quan Yang,†,‡ Siqi Liu,†,‡ Yugang Sun,* and Yi-Jun Xu*,†,‡ †State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, P.R. China ‡College of Chemistry, New Campus, Fuzhou University, Fuzhou 350108, P.R. China Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States

997 citations

Journal ArticleDOI
TL;DR: There is a considerable interest in the development of photocatalytic CO2 conversion by sunlight, since this process has similarities with natural photosynthesis on which life on Earth is based as discussed by the authors.
Abstract: There is a considerable interest in the development of photocatalytic CO2 conversion by sunlight, since this process has similarities with natural photosynthesis on which life on Earth is based. At...

370 citations

Journal ArticleDOI
TL;DR: In this paper, the authors propose a standard for reporting data in heterogeneous photocatalyst powders to compare photocatalytic efficiency among different materials, and clarify misconceptions as to why researchers should avoid reporting rates of evolution per gram, per surface area of catalyst, or as turnover frequencies (TOFs) alone.
Abstract: Heterogeneous photocatalysis is a potentially competitive solution for the direct production of solar fuels. This research field has seen tremendous growth over the last five decades, and with such an exciting research topic, it has seen—and will continue to see—an increasing number of papers being published in a variety of journals. However, it is becoming increasingly difficult to compare the efficiencies of heterogeneous photocatalyst powders, because different researchers report their results in different ways. Efforts have been made to create standards for reporting data in this field, but there continues to be a discrepancy in published works. This article intends to clarify efficiency definitions, and clarify misconceptions as to why researchers should avoid reporting rates of evolution per gram, per surface area of catalyst, or as turnover frequencies (TOFs) alone, to be able to compare photocatalytic efficiency among different materials. By providing an example of a photoreactor for water splitti...

243 citations