scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Promoting SnTe as an Eco-Friendly Solution for p-PbTe Thermoelectric via Band Convergence and Interstitial Defects

01 May 2017-Advanced Materials (John Wiley & Sons, Ltd)-Vol. 29, Iss: 17, pp 1605887
TL;DR: A combination of band convergence and interstitial defects, each of which enables a ≈150% increase in the peak zT, successfully accumulates the zT enhancements to be ≈300% (zT up to 1.6) without involving any toxic elements.
Abstract: Compared to commercially available p-type PbTe thermoelectrics, SnTe has a much bigger band offset between its two valence bands and a much higher lattice thermal conductivity, both of which limit its peak thermoelectric figure of merit, zT of only 0.4. Converging its valence bands or introducing resonant states is found to enhance the electronic properties, while nanostructuring or more recently introducing interstitial defects is found to reduce the lattice thermal conductivity. Even with an integration of some of the strategies above, existing efforts do not enable a peak zT exceeding 1.4 and usually involve Cd or Hg. In this work, a combination of band convergence and interstitial defects, each of which enables a ≈150% increase in the peak zT, successfully accumulates the zT enhancements to be ≈300% (zT up to 1.6) without involving any toxic elements. This opens new possibilities for further improvements and promotes SnTe as an environment-friendly solution for conventional p-PbTe thermoelectrics.
Citations
More filters
Journal ArticleDOI
TL;DR: This review aims to comprehensively summarize the state-of-the-art strategies for the realization of high-performance thermoelectric materials and devices by establishing the links between synthesis, structural characteristics, properties, underlying chemistry and physics.
Abstract: The long-standing popularity of thermoelectric materials has contributed to the creation of various thermoelectric devices and stimulated the development of strategies to improve their thermoelectric performance. In this review, we aim to comprehensively summarize the state-of-the-art strategies for the realization of high-performance thermoelectric materials and devices by establishing the links between synthesis, structural characteristics, properties, underlying chemistry and physics, including structural design (point defects, dislocations, interfaces, inclusions, and pores), multidimensional design (quantum dots/wires, nanoparticles, nanowires, nano- or microbelts, few-layered nanosheets, nano- or microplates, thin films, single crystals, and polycrystalline bulks), and advanced device design (thermoelectric modules, miniature generators and coolers, and flexible thermoelectric generators). The outline of each strategy starts with a concise presentation of their fundamentals and carefully selected examples. In the end, we point out the controversies, challenges, and outlooks toward the future development of thermoelectric materials and devices. Overall, this review will serve to help materials scientists, chemists, and physicists, particularly students and young researchers, in selecting suitable strategies for the improvement of thermoelectrics and potentially other relevant energy conversion technologies.

951 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on major novel strategies to achieve high-performance thermoelectric (TE) materials and their applications, and present a review of these strategies.
Abstract: Thermoelectric (TE) materials have the capability of converting heat into electricity, which can improve fuel efficiency, as well as providing robust alternative energy supply in multiple applications by collecting wasted heat, and therefore, assisting in finding new energy solutions. In order to construct high performance TE devices, superior TE materials have to be targeted via various strategies. The development of high performance TE devices can broaden the market of TE application and eventually boost the enthusiasm of TE material research. This review focuses on major novel strategies to achieve high-performance TE materials and their applications. Manipulating the carrier concentration and band structures of materials are effective in optimizing the electrical transport properties, while nanostructure engineering and defect engineering can greatly reduce the thermal conductivity approaching the amorphous limit. Currently, TE devices are utilized to generate power in remote missions, solar-thermal systems, implantable or/wearable devices, the automotive industry, and many other fields; they are also serving as temperature sensors and controllers or even gas sensors. The future tendency is to synergistically optimize and integrate all the effective factors to further improve the TE performance, so that highly efficient TE materials and devices can be more beneficial to daily lives.

563 citations

Journal ArticleDOI
16 May 2018-Joule
TL;DR: In this paper, the symmetry breaking of band degeneracy is demonstrated in rhombohedral GeTe alloys, having a slightly reduced symmetry from its cubic structure, to realize a record figure of merit (zT ∼ 2.4) at 600 K.

367 citations


Cites background or methods from "Promoting SnTe as an Eco-Friendly S..."

  • ...4 at 600 K (Figure 1B), which is much higher than that of any of its cubic analogs.(2,6,31,32,36) Such a record zT stems from a slight symmetry reduction from a cubic structure, which simultaneously enables the rearrangement of split valence bands and the reduction in kL....

    [...]

  • ...Symmetry Reduction for Enhancing Thermoelectric GeTe (A and B) Evolution of crystal structure-dependent Fermi surface of the dominant transporting valence band(s) of GeTe (A), and zT with SD of measurements for rhombohedral GeTe, with a comparison with best-performance cubic IV-VI thermoelectrics (B).(2,6,31,32,36)...

    [...]

Journal ArticleDOI
TL;DR: In this article, a thermoelectric generator is used to directly convert heat into electricity, which holds great promise for tackling the ever-increasing energy sustainability issue in the future.
Abstract: Thermoelectric generators, capable of directly converting heat into electricity, hold great promise for tackling the ever-increasing energy sustainability issue. The thermoelectric energy conversio...

351 citations

Journal ArticleDOI
TL;DR: T theoretical studies reveal that cubic GeTe has superior thermoelectric behavior, which is linked to (1) the two valence bands to enhance the electronic transport coefficients and (2) stronger enharmonic phonon-phonon interactions to ensure a lower intrinsic thermal conductivity.
Abstract: GeTe with rhombohedral-to-cubic phase transition is a promising lead-free thermoelectric candidate. Herein, theoretical studies reveal that cubic GeTe has superior thermoelectric behavior, which is linked to (1) the two valence bands to enhance the electronic transport coefficients and (2) stronger enharmonic phonon-phonon interactions to ensure a lower intrinsic thermal conductivity. Experimentally, based on Ge1-x Sbx Te with optimized carrier concentration, a record-high figure-of-merit of 2.3 is achieved via further doping with In, which induces the distortion of the density of states near the Fermi level. Moreover, Sb and In codoping reduces the phase-transition temperature to extend the better thermoelectric behavior of cubic GeTe to low temperature. Additionally, electronic microscopy characterization demonstrates grain boundaries, a high-density of stacking faults, and nanoscale precipitates, which together with the inevitable point defects result in a dramatically decreased thermal conductivity. The fundamental investigation and experimental demonstration provide an important direction for the development of high-performance Pb-free thermoelectric materials.

301 citations

References
More filters
Journal ArticleDOI
02 May 2008-Science
TL;DR: Electrical transport measurements, coupled with microstructure studies and modeling, show that the ZT improvement is the result of low thermal conductivity caused by the increased phonon scattering by grain boundaries and defects, which makes these materials useful for cooling and power generation.
Abstract: The dimensionless thermoelectric figure of merit (ZT) in bismuth antimony telluride (BiSbTe) bulk alloys has remained around 1 for more than 50 years. We show that a peak ZT of 1.4 at 100°C can be achieved in a p-type nanocrystalline BiSbTe bulk alloy. These nanocrystalline bulk materials were made by hot pressing nanopowders that were ball-milled from crystalline ingots under inert conditions. Electrical transport measurements, coupled with microstructure studies and modeling, show that the ZT improvement is the result of low thermal conductivity caused by the increased phonon scattering by grain boundaries and defects. More importantly, ZT is about 1.2 at room temperature and 0.8 at 250°C, which makes these materials useful for cooling and power generation. Cooling devices that use these materials have produced high-temperature differences of 86°, 106°, and 119°C with hot-side temperatures set at 50°, 100°, and 150°C, respectively. This discovery sets the stage for use of a new nanocomposite approach in developing high-performance low-cost bulk thermoelectric materials.

4,695 citations

Journal ArticleDOI
17 Apr 2014-Nature
TL;DR: An unprecedented ZT of 2.6 ± 0.3 at 923 K is reported in SnSe single crystals measured along the b axis of the room-temperature orthorhombic unit cell, which highlights alternative strategies to nanostructuring for achieving high thermoelectric performance.
Abstract: The thermoelectric effect enables direct and reversible conversion between thermal and electrical energy, and provides a viable route for power generation from waste heat The efficiency of thermoelectric materials is dictated by the dimensionless figure of merit, ZT (where Z is the figure of merit and T is absolute temperature), which governs the Carnot efficiency for heat conversion Enhancements above the generally high threshold value of 25 have important implications for commercial deployment, especially for compounds free of Pb and Te Here we report an unprecedented ZT of 26 ± 03 at 923 K, realized in SnSe single crystals measured along the b axis of the room-temperature orthorhombic unit cell This material also shows a high ZT of 23 ± 03 along the c axis but a significantly reduced ZT of 08 ± 02 along the a axis We attribute the remarkably high ZT along the b axis to the intrinsically ultralow lattice thermal conductivity in SnSe The layered structure of SnSe derives from a distorted rock-salt structure, and features anomalously high Gruneisen parameters, which reflect the anharmonic and anisotropic bonding We attribute the exceptionally low lattice thermal conductivity (023 ± 003 W m(-1) K(-1) at 973 K) in SnSe to the anharmonicity These findings highlight alternative strategies to nanostructuring for achieving high thermoelectric performance

3,823 citations

Journal ArticleDOI
20 Sep 2012-Nature
TL;DR: It is shown that heat-carrying phonons with long mean free paths can be scattered by controlling and fine-tuning the mesoscale architecture of nanostructured thermoelectric materials, and an increase in ZT beyond the threshold of 2 highlights the role of, and need for, multiscale hierarchical architecture in controlling phonon scattering in bulk thermoeLECTrics.
Abstract: Controlling the structure of thermoelectric materials on all length scales (atomic, nanoscale and mesoscale) relevant for phonon scattering makes it possible to increase the dimensionless figure of merit to more than two, which could allow for the recovery of a significant fraction of waste heat with which to produce electricity.

3,670 citations

Journal ArticleDOI
25 Jul 2008-Science
TL;DR: A successful implementation through the use of the thallium impurity levels in lead telluride (PbTe) is reported, which results in a doubling of zT in p-type PbTe to above 1.5 at 773 kelvin.
Abstract: The efficiency of thermoelectric energy converters is limited by the material thermoelectric figure of merit (zT). The recent advances in zT based on nanostructures limiting the phonon heat conduction is nearing a fundamental limit: The thermal conductivity cannot be reduced below the amorphous limit. We explored enhancing the Seebeck coefficient through a distortion of the electronic density of states and report a successful implementation through the use of the thallium impurity levels in lead telluride (PbTe). Such band structure engineering results in a doubling of zT in p-type PbTe to above 1.5 at 773 kelvin. Use of this new physical principle in conjunction with nanostructuring to lower the thermal conductivity could further enhance zT and enable more widespread use of thermoelectric systems.

3,401 citations