scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Properties of nanocomposites of α-Fe and Fe3O4

TL;DR: In this article, a reduction treatment in hydrogen at a temperature of 683 K for a duration from 5 to 40 min is described, where the incorporation of hydrogen atoms during the reduction process appears to break down the precursor oxide particles.
About: This article is published in Journal of Magnetism and Magnetic Materials.The article was published on 2002-04-01. It has received 21 citations till now. The article focuses on the topics: Superparamagnetism & Magnetization.
References
More filters
Journal ArticleDOI
TL;DR: Mise en evidence d'un interaction d'echange intercouche antiferromagnetique et d'une magnetoconductivite en saturation dans les superreseaux Co/Cr et Co/Ru.
Abstract: We report the discovery of antiferromagnetic interlayer exchange coupling and enhanced saturation magnetoresistance in two new metallic superlattice systems, Co/Cr and Co/Ru. In these systems and in Fe/Cr superlattices both the magnitude of the interlayer magnetic exchange coupling and the saturation magnetoresistance are found to oscillate with the Cr or Ru spacer layer thickness with a period ranging from 12 \AA{} in Co/Ru to \ensuremath{\simeq}18--21 \AA{} in the Fe/Cr and Co/Cr systems.

2,202 citations

Journal ArticleDOI
TL;DR: Giant magnetoresistance in heterogeneous thin film Cu-Co alloys consisting of ultrafine Co-rich precipitate particles in a Cu-rich matrix is observed, modeled by including spin-dependent scattering at the interfaces between the particles and the matrix, as well as the spin- dependent scattering in the Co- rich particles.
Abstract: We have observed giant magnetoresistance in heterogeneous thin film Cu-Co alloys consisting of ultrafine Co-rich precipitate particles in a Cu-rich matrix. The magnetoresistance scales inversely with the average particle diameter. This behavior is modeled by including spin-dependent scattering at the interfaces between the particles and the matrix, as well as the spin-dependent scattering in the Co-rich particles.

1,566 citations

Journal ArticleDOI
TL;DR: The observed isotropic giant magnetoresistance (GMR) in nonmultilayer magnetic systems using granular magnetic solids is shown to occur in magnetically inhomogeneous media containing nonaligned ferromagnetic entities on a microscopic scale.
Abstract: We have observed isotropic giant magnetoresistance (GMR) in nonmultilayer magnetic systems using granular magnetic solids. We show that GMR occurs in magnetically inhomogeneous media containing nonaligned ferromagnetic entities on a microscopic scale. The GMR is determined by the orientations of the magnetization axes, the density, and the size of the ferromagnetic entities.

1,465 citations

Journal ArticleDOI
TL;DR: In this paper, a model of the magnetization within these particles consisting of ferrimagnetically aligned core spins and a spin-glass-like surface layer is proposed, and the qualitative features of this model are reproduced by a numerical calculation of the spin distribution.
Abstract: Nickel ferrite nanoparticles exhibit anomalous magnetic properties at low temperatures: low magnetization with a large differential susceptibility at high fields, hysteresis loops which are open up to 160 kOe, time-dependent magnetization in 70 kOe applied field, and shifted hysteresis loops after field cooling. We propose a model of the magnetization within these particles consisting of ferrimagnetically aligned core spins and a spin-glass-like surface layer. We find that qualitative features of this model are reproduced by a numerical calculation of the spin distribution. Implications of this model for possible macroscopic quantum tunneling in these materials are discussed.

1,407 citations