scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Proposed Experiment to Test Local Hidden Variable Theories.

13 Oct 1969-Physical Review Letters (American Physical Society)-Vol. 23, Iss: 15, pp 880-884
TL;DR: In this paper, a theorem of Bell, proving that certain predictions of quantum mechanics are inconsistent with the entire family of local hidden-variable theories, is generalized so as to apply to realizable experiments.
Abstract: A theorem of Bell, proving that certain predictions of quantum mechanics are inconsistent with the entire family of local hidden-variable theories, is generalized so as to apply to realizable experiments. A proposed extension of the experiment of Kocher and Commins, on the polarization correlation of a pair of optical photons, will provide a decisive test between quantum mechanics and local hidden-variable theories.
Citations
More filters
01 Dec 2010
TL;DR: This chapter discusses quantum information theory, public-key cryptography and the RSA cryptosystem, and the proof of Lieb's theorem.
Abstract: Part I. Fundamental Concepts: 1. Introduction and overview 2. Introduction to quantum mechanics 3. Introduction to computer science Part II. Quantum Computation: 4. Quantum circuits 5. The quantum Fourier transform and its application 6. Quantum search algorithms 7. Quantum computers: physical realization Part III. Quantum Information: 8. Quantum noise and quantum operations 9. Distance measures for quantum information 10. Quantum error-correction 11. Entropy and information 12. Quantum information theory Appendices References Index.

14,825 citations

Journal ArticleDOI
TL;DR: In this article, the basic aspects of entanglement including its characterization, detection, distillation, and quantification are discussed, and a basic role of entonglement in quantum communication within distant labs paradigm is discussed.
Abstract: All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory} But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding However, it appeared that this new resource is very complex and difficult to detect Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon A basic role of entanglement witnesses in detection of entanglement is emphasized

6,980 citations

Journal ArticleDOI
TL;DR: The author revealed that quantum teleportation as “Quantum one-time-pad” had changed from a “classical teleportation” to an “optical amplification, privacy amplification and quantum secret growing” situation.
Abstract: Quantum cryptography could well be the first application of quantum mechanics at the individual quanta level. The very fast progress in both theory and experiments over the recent years are reviewed, with emphasis on open questions and technological issues.

6,949 citations


Cites background from "Proposed Experiment to Test Local H..."

  • ...(68)] and the Clauser-Horne-Shimony-Holt (CHSH) form of Bell’s inequality (Bell, 1964; Clauser et al., 1969; Clauser and Shimony, 1978; Zeilinger, 1999):...

    [...]

Journal ArticleDOI
TL;DR: It is proved that an EPP involving one-way classical communication and acting on mixed state M (obtained by sharing halves of Einstein-Podolsky-Rosen pairs through a channel) yields a QECC on \ensuremath{\chi} with rate Q=D, and vice versa, and it is proved Q is not increased by adding one- way classical communication.
Abstract: Entanglement purification protocols (EPPs) and quantum error-correcting codes (QECCs) provide two ways of protecting quantum states from interaction with the environment. In an EPP, perfectly entangled pure states are extracted, with some yield D, from a mixed state M shared by two parties; with a QECC, an arbitrary quantum state |\ensuremath{\xi}〉 can be transmitted at some rate Q through a noisy channel \ensuremath{\chi} without degradation. We prove that an EPP involving one-way classical communication and acting on mixed state M^(\ensuremath{\chi}) (obtained by sharing halves of Einstein-Podolsky-Rosen pairs through a channel \ensuremath{\chi}) yields a QECC on \ensuremath{\chi} with rate Q=D, and vice versa. We compare the amount of entanglement E(M) required to prepare a mixed state M by local actions with the amounts ${\mathit{D}}_{1}$(M) and ${\mathit{D}}_{2}$(M) that can be locally distilled from it by EPPs using one- and two-way classical communication, respectively, and give an exact expression for E(M) when M is Bell diagonal. While EPPs require classical communication, QECCs do not, and we prove Q is not increased by adding one-way classical communication. However, both D and Q can be increased by adding two-way communication. We show that certain noisy quantum channels, for example a 50% depolarizing channel, can be used for reliable transmission of quantum states if two-way communication is available, but cannot be used if only one-way communication is available. We exhibit a family of codes based on universal hashing able to achieve an asymptotic Q (or D) of 1-S for simple noise models, where S is the error entropy. We also obtain a specific, simple 5-bit single-error-correcting quantum block code. We prove that iff a QECC results in high fidelity for the case of no error then the QECC can be recast into a form where the encoder is the matrix inverse of the decoder. \textcopyright{} 1996 The American Physical Society.

4,563 citations

Journal ArticleDOI
22 Nov 2001-Nature
TL;DR: It is shown that the communication efficiency scales polynomially with the channel length, and hence the scheme should be operable over very long distances.
Abstract: Quantum communication holds promise for absolutely secure transmission of secret messages and the faithful transfer of unknown quantum states. Photonic channels appear to be very attractive for the physical implementation of quantum communication. However, owing to losses and decoherence in the channel, the communication fidelity decreases exponentially with the channel length. Here we describe a scheme that allows the implementation of robust quantum communication over long lossy channels. The scheme involves laser manipulation of atomic ensembles, beam splitters, and single-photon detectors with moderate efficiencies, and is therefore compatible with current experimental technology. We show that the communication efficiency scales polynomially with the channel length, and hence the scheme should be operable over very long distances.

3,126 citations

References
More filters
Journal ArticleDOI
TL;DR: Consideration of the problem of making predictions concerning a system on the basis of measurements made on another system that had previously interacted with it leads to the result that one is led to conclude that the description of reality as given by a wave function is not complete.
Abstract: In a complete theory there is an element corresponding to each element of reality. A sufficient condition for the reality of a physical quantity is the possibility of predicting it with certainty, without disturbing the system. In quantum mechanics in the case of two physical quantities described by non-commuting operators, the knowledge of one precludes the knowledge of the other. Then either (1) the description of reality given by the wave function in quantum mechanics is not complete or (2) these two quantities cannot have simultaneous reality. Consideration of the problem of making predictions concerning a system on the basis of measurements made on another system that had previously interacted with it leads to the result that if (1) is false then (2) is also false. One is thus led to conclude that the description of reality as given by a wave function is not complete.

13,778 citations

Journal ArticleDOI
01 Nov 1964-Physics
TL;DR: In this article, it was shown that even without such a separability or locality requirement, no hidden variable interpretation of quantum mechanics is possible and that such an interpretation has a grossly nonlocal structure, which is characteristic of any such theory which reproduces exactly the quantum mechanical predictions.
Abstract: THE paradox of Einstein, Podolsky and Rosen [1] was advanced as an argument that quantum mechanics could not be a complete theory but should be supplemented by additional variables These additional variables were to restore to the theory causality and locality [2] In this note that idea will be formulated mathematically and shown to be incompatible with the statistical predictions of quantum mechanics It is the requirement of locality, or more precisely that the result of a measurement on one system be unaffected by operations on a distant system with which it has interacted in the past, that creates the essential difficulty There have been attempts [3] to show that even without such a separability or locality requirement no "hidden variable" interpretation of quantum mechanics is possible These attempts have been examined elsewhere [4] and found wanting Moreover, a hidden variable interpretation of elementary quantum theory [5] has been explicitly constructed That particular interpretation has indeed a grossly nonlocal structure This is characteristic, according to the result to be proved here, of any such theory which reproduces exactly the quantum mechanical predictions

10,253 citations

Journal ArticleDOI
John S. Bell1
TL;DR: The demonstrations of von Neumann and others, that quantum mechanics does not permit a hidden variable interpretation, are reconsidered in this article, and it is shown that their essential axioms are unreasonable.
Abstract: The demonstrations of von Neumann and others, that quantum mechanics does not permit a hidden variable interpretation, are reconsidered. It is shown that their essential axioms are unreasonable. It is urged that in further examination of this problem an interesting axiom would be that mutually distant systems are independent of one another.

3,230 citations

Journal ArticleDOI
TL;DR: In this article, it is shown that a certain "criterion of physical reality" formulated in a recent article with the above title by A. Einstein, B. Podolsky and N. Rosen contains an essential ambiguity when it is applied to quantum phenomena.
Abstract: It is shown that a certain "criterion of physical reality" formulated in a recent article with the above title by A. Einstein, B. Podolsky and N. Rosen contains an essential ambiguity when it is applied to quantum phenomena. In this connection a viewpoint termed "complementarity" is explained from which quantum-mechanical description of physical phenomena would seem to fulfill, within its scope, all rational demands of completeness.

2,638 citations

Journal ArticleDOI
TL;DR: A brief review of the physical significance of the paradox of Einstein, Rosen, and Podolsky is given, and it is shown that it involves a kind of correlation of the properties of distant noninteracting systems, which is quite different from previously known kinds of correlation as discussed by the authors.
Abstract: A brief review of the physical significance of the paradox of Einstein, Rosen, and Podolsky is given, and it is shown that it involves a kind of correlation of the properties of distant noninteracting systems, which is quite different from previously known kinds of correlation. An illustrative hypothesis is considered, which would avoid the paradox, and which would still be consistent with all experimental results that have been analyzed to date. It is shown, however, that there already is an experiment whose significance with regard to this problem has not yet been explicitly brought out, but which is able to prove that this suggested resolution of the paradox (as well as a very wide class of such resolutions) is not tenable. Thus, this experiment may be regarded as the first clear empirical proof that the aspects of the quantum theory discussed by Einstein, Rosen, and Podolsky represent real properties of matter.

565 citations