scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Protection by attenuated simian immunodeficiency virus in macaques against challenge with virus-infected cells

27 May 1995-The Lancet (Elsevier)-Vol. 345, Iss: 8961, pp 1342-1344
TL;DR: Findings show that live-attenuated vaccine can confer protection against SIV in macaques, and the mechanism of this potent protection must be understood and reproduced by less hazardous means.
About: This article is published in The Lancet.The article was published on 1995-05-27. It has received 235 citations till now. The article focuses on the topics: Simian immunodeficiency virus & Virus.
Citations
More filters
Journal ArticleDOI
TL;DR: The frequency of normal embryonic karyotypes significantly increases with the number of previous abortions, and a normal karyotype in a previous pregnancy is a predictor of subsequent miscarriage.

457 citations

Journal ArticleDOI
TL;DR: It is reported that optimized codon usage of an injected DNA sequence considerably increases both humoral and cellular immune responses and a synthetic human immunodeficiency virus type 1 gp120 sequence, syngp120, is characterized byrev-independent expression and a low risk of recombination with viral sequences.
Abstract: DNA vaccination elicits humoral and cellular immune responses and has been shown to confer protection against several viral, bacterial, and parasitic pathogens. Here we report that optimized codon usage of an injected DNA sequence considerably increases both humoral and cellular immune responses. We recently generated a synthetic human immunodeficiency virus type 1 gp120 sequence in which most wild-type codons were replaced with codons from highly expressed human genes (syngp120). In vitro expression of syngp120 is considerably increased in comparison to that of the respective wild-type sequence. In BALB/c mice, DNA immunization with syngp120 resulted in significantly increased antibody titers and cytotoxic T-lymphocyte reactivity, suggesting a direct correlation between expression levels and the immune response. Moreover, syngp120 is characterized by rev-independent expression and a low risk of recombination with viral sequences. Thus, synthetic genes with optimized codon usage represent a novel strategy to increase the efficacy and safety of DNA vaccination.

418 citations


Cites background from "Protection by attenuated simian imm..."

  • ...In primate models in which a rather avirulent virus challenge was used, vaccines inducing a limited immune response (like that induced by subunit vaccines, recombinant vectors, and peptides) were protective (3, 5, 56); however, in more pathogenic animal models, only live attenuated virus was successful (1, 13)....

    [...]

Journal ArticleDOI
TL;DR: It is concluded that this multiply deleted SIV is pathogenic and that human AIDS vaccines built on similar prototypes may cause AIDS.
Abstract: A substantial risk in using live attenuated, multiply deleted viruses as vaccines against AIDS is their potential to induce AIDS. A mutant of the simian immunodeficiency virus (SIV) with large deletions in nef and vpr and in the negative regulatory element induced AIDS in six of eight infant macaques vaccinated orally or intravenously. Early signs of immune dysfunction were seen in the remaining two offspring. Prolonged follow-up of sixteen vaccinated adult macaques also showed resurgence of chronic viremia in four animals: two of these developed early signs of disease and one died of AIDS. We conclude that this multiply deleted SIV is pathogenic and that human AIDS vaccines built on similar prototypes may cause AIDS.

371 citations

Journal ArticleDOI
TL;DR: Analysis of cell-associated viral loads, CD4+ cell counts, and viral gene sequences present in peripheral blood in the remainder of the monkeys following challenge allowed a number of conclusions that there was a trend toward increased protection with length of time of vaccination.
Abstract: Twelve rhesus monkeys were vaccinated with SIVmac316 delta nef (lacking nef sequences), and 12 were vaccinated with SIVmac239 delta3 (lacking nef, vpr, and upstream sequences in U3). SIVmac316 and SIVmac239 differ by only eight amino acids in the envelope; these changes render SIVmac316 highly competent for replication in macrophages. Seventeen of the animals developed persistent infections with the vaccine viruses. Seven of the 24 vaccinated animals, however, developed infections that were apparently transient in nature. Six of these seven yielded virus from peripheral blood when tested at weeks 2 and/or 3, three of the seven had transient antibody responses, but none of the seven had persisting antibody responses. The 24 monkeys were challenged in groups of four with 10 rhesus monkey infectious doses of wild-type, pathogenic SIVmac251 at weeks 8, 20, and 79 following receipt of vaccine. None of the seven with apparently transient infections with vaccine virus were protected upon subsequent challenge. Analysis of cell-associated viral loads, CD4+ cell counts, and viral gene sequences present in peripheral blood in the remainder of the monkeys following challenge allowed a number of conclusions. (i) There was a trend toward increased protection with length of time of vaccination. (ii) Solid vaccine protection was achieved by 79 weeks with the highly attenuated SIV239 delta3. (iii) Solid long-term protection was achieved in at least two animals in the absence of complete sterilizing immunity. (iv) Genetic backbone appeared to influence protective capacity; animals vaccinated with SIV239 delta3 were better protected than animals receiving SIV316 delta nef. This better protection correlated with increased levels of the replicating vaccine strain. (v) The titer of virus-neutralizing activity in serum on the day of challenge correlated with protection when measured against a primary stock of SIVmac251 but not when measured against a laboratory-passaged stock. The level of binding antibodies to whole virus by enzyme-linked immunosorbent assay also correlated with protection.

331 citations


Cites background from "Protection by attenuated simian imm..."

  • ...Meaningful levels of protection against the virulent SIVmac251 have been achieved only through the use of cellular antigens under stringently proscribed conditions (3, 6, 41) and by live attenuated nef deletion mutants (2, 7)....

    [...]

Journal ArticleDOI
TL;DR: The DNA vaccine raised both neutralizing antibody and cytotoxic T-lymphocyte responses and provided some attenuation of the acute phase of infection, but it did not prevent the loss of CD4+ cells.
Abstract: An experimental vaccine consisting of five DNA plasmids expressing different combinations and forms of simian immunodeficiency virus-macaque (SIVmac) proteins has been evaluated for the ability to protect against a highly pathogenic uncloned SIVmac251 challenge. One vaccine plasmid encoded nonreplicating SIVmac239 virus particles. The other four plasmids encoded secreted forms of the envelope glycoproteins of two T-cell-tropic relatives (SIVmac239 and SIVmac251) and one monocyte/macrophage-tropic relative (SIVmac316) of the uncloned challenge virus. Rhesus macaques were inoculated with DNA at 1 and 3, 11 and 13, and 21 and 23 weeks. Four macaques were inoculated intravenously, intramuscularly, and by gene gun inoculations. Three received only gene gun inoculations. Two control monkeys were inoculated with control plasmids by all three routes of inoculation. Neutralizing antibody titers of 1:216 to 1:768 were present in all of the vaccinated monkeys after the second cluster of inoculations. These titers were transient, were not boosted by the third cluster of inoculations, and had fallen to 1:24 to 1:72 by the time of challenge. Cytotoxic T-cell activity for Env was also raised in all of the vaccinated animals. The temporal appearance of cytotoxic T cells was similar to that of antibody. However, while antibody responses fell with time, cytotoxic T-cell responses persisted. The SIVmac251 challenge was administered intravenously at 2 weeks following the last immunization. The DNA immunizations did not prevent infection or protect against CD4+ cell loss. Long-term chronic levels of infection were similar in the vaccinated and control animals, with 1 in 10,000 to 1 in 100,000 peripheral blood cells carrying infectious virus. However, viral loads were reduced to the chronic level over a shorter period of time in the vaccinated groups (6 weeks) than in the control group (12 weeks). Thus, the DNA vaccine raised both neutralizing antibody and cytotoxic T-lymphocyte responses and provided some attenuation of the acute phase of infection, but it did not prevent the loss of CD4+ cells.

281 citations


Cites background from "Protection by attenuated simian imm..."

  • ...In these highly pathogenic models only live attenuated infections have generated protective immunity (2, 11)....

    [...]

References
More filters
Journal ArticleDOI
17 May 1991-Cell
TL;DR: The results indicate that nef is required for maintaining high virus loads during the course of persistent infection in vivo and for full pathologic potential, and should become a target for antiviral drug development.

1,622 citations

Journal ArticleDOI
18 Dec 1992-Science
TL;DR: Rhesus monkeys vaccinated with live SIV deleted in nef were completely protected against challenge by intravenous inoculation of live, pathogenic SIV.
Abstract: Vaccine protection against the human immunodeficiency virus (HIV) and the related simian immunodeficiency virus (SIV) in animal models is proving to be a difficult task. The difficulty is due in large part to the persistent, unrelenting nature of HIV and SIV infection once infection is initiated. SIV with a constructed deletion in the auxiliary gene nef replicates poorly in rhesus monkeys and appears to be nonpathogenic in this normally susceptible host. Rhesus monkeys vaccinated with live SIV deleted in nef were completely protected against challenge by intravenous inoculation of live, pathogenic SIV. Deletion of nef or of multiple genetic elements from HIV may provide the means for creating a safe, effective, live attenuated vaccine to protect against acquired immunodeficiency syndrome (AIDS).

1,076 citations

Journal ArticleDOI
24 Jan 1992-Science
TL;DR: Results indicate that immunization with viral envelope antigens alone is sufficient to elicit protective immunity against a primate immunodeficiency virus.
Abstract: Simian immunodeficiency virus (SIV) is a primate lentivirus related to human immunodeficiency viruses and is an etiologic agent for acquired immunodeficiency syndrome (AIDS)-like diseases in macaques. To date, only inactivated whole virus vaccines have been shown to protect macaques against SIV infection. Protective immunity was elicited by recombinant subunit vaccines. Four Macaca fascicularis were immunized with recombinant vaccinia virus expressing SIVmne gp160 and were boosted with gp160 produced in baculovirus-infected cells. All four animals were protected against an intravenous challenge of the homologous virus at one to nine animal-infectious doses. These results indicate that immunization with viral envelope antigens alone is sufficient to elicit protective immunity against a primate immunodeficiency virus. The combination immunization regimen, similar to one now being evaluated in humans as candidate human immunodeficiency virus (HIV)-1 vaccines, appears to be an effective way to elicit such immune responses.

355 citations

Journal ArticleDOI
TL;DR: Results support the observation that a nef deletion mutant of SIVmac239 lost its pathogenic potential and resulted in low-level viraemia when rhesus macaques were infected, and Virus challenge pools for vaccine studies have been prepared for pJ5 using both human and monkey cell substrates and these stocks have been titrated both in vitro and in vivo.
Abstract: The proviral genome of the 32H reisolate of simian immunodeficiency of macaques (SIVmac32H) has been cloned and sequenced. Including both long terminal repeats, it is 10277 base pairs in length and contains open reading frames for all known SIV genes (gag, pol, vif, vpx, vpr, tat, rev, env and nef). This is the first report of an infectious SIVmac molecular clone which contains no premature termination codons. Three molecular clones of SIVmac32H have been constructed differing in sequence only within their last 1.2 kb. Two of the molecular clones, SIVmac32H(pJ5) and SIVmac32H (pC8), differ in the nef coding region by an in-frame deletion of four amino acids in pC8 and two conservative amino acid changes; other nucleotide changes in the 3′ LTR were not associated with known functionally critical motifs. The third clone, SIVmac32H(pB1), contains the last 1.2 kb of the SIVmac251 clone pBK28. The biological properties of virus produced after electroporation of these clones into C8166 cells has been assessed by infection of rhesus and cynomolgus macaques, time to seroconversion and by induction of cytopathic effects upon co-cultivation of infected rhesus peripheral blood lymphocytes with C8166 cells. The viruses obtained from these clones have identical growth kinetics in vitro but differ in their ability to persist in macaques. Macaques infected with pJ5 derived virus remain viraemic longer than macaques infected with pC8-derived virus. PCR analysis of circulating provirus indicates that the nef gene evolved over time in pJ5 virus-infected macaques, whereas late in infection in pC8 virus-infected macaques the nef gene remained invariant in sequence. These results support the observation that a nef deletion mutant of SIV mac239 lost its pathogenic potential and resulted in low-level viraemia when rhesus macaques were infected. Virus challenge pools for vaccine studies have been prepared for pJ5 using both human and monkey cell substrates and these stocks have been titrated both in vitro and in vivo. Virus has also been prepared from pC8 and titrated in vitro. This virus pool is being assessed as an attenuated live-virus vaccine in macaques. Since only virus originating from the SIVmac239 molecular clone is known to cause AIDS-like symptoms in rhesus macaques consistently, the SIVmac32H molecular clones should tell us more about which viral sequence features are important for the pathogenesis of AIDS.

126 citations

Journal ArticleDOI
TL;DR: The available data provide no basis for testing any HIV vaccine in human beings either before or after infection, and the main challenge is to find a way to kill cells with chromosomally integrated HIV cDNA without harming normal cells, perhaps by identifying repressor proteins that might be produced by the cells with integrated HIVcDNA and thus could become specific targets for cell-killing drugs.
Abstract: The worldwide effort to produce a vaccine against AIDS continues to disregard the fact that even human immunodeficiency virus (HIV)-specific neutralizing antibodies and cell-mediated immunity are ineffective against virus within cells without viral antigens on the cell membrane--and that much of HIV infection is transmitted in this manner. According to a recent report, a simian immunodeficiency virus vaccine that protected monkeys against an intravenous challenge with cell-free virus was, as predicted, ineffective against an intravenous challenge with the same amount of virus in infected cells. Moreover, antibody and HIV have been found to coexist in cell-free plasma from asymptomatic and symptomatic patients. Excluding direct introduction of HIV into the blood-stream, the most common and efficient form of transmission of HIV infection is by receptive anal intercourse, and semen contains large numbers of infected cells per milliliter. Recent reports showing that colorectal cells can be persistently infected by HIV and that HIV RNA and cDNA are present in the cells of the colon of dead AIDS patients indicate that either cell-free or intracellular HIV has the capacity to multiply at the portal of entry in the colorectal area without interference from neutralizing antibodies. The available data provide no basis for testing any HIV vaccine in human beings either before or after infection. The main challenge is to find a way to kill cells with chromosomally integrated HIV cDNA without harming normal cells, perhaps by identifying repressor proteins that might be produced by the cells with integrated HIV cDNA and thus could become specific targets for cell-killing drugs.

58 citations