scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Protein export through the bacterial Sec pathway

01 Jan 2017-Nature Reviews Microbiology (Nature Research)-Vol. 15, Iss: 1, pp 21-36
TL;DR: Recent biochemical, structural and mechanistic insights into the consecutive steps of the Sec pathway — sorting and targeting, translocation and release — in both co-translational and post- translational modes of export are discussed.
Abstract: The general secretory (Sec) pathway comprises an essential, ubiquitous and universal export machinery for most proteins that integrate into, or translocate through, the plasma membrane. Sec exportome polypeptides are synthesized as pre-proteins that have cleavable signal peptides fused to the exported mature domains. Recent advances have re-evaluated the interaction networks of pre-proteins with chaperones that are involved in pre-protein targeting from the ribosome to the SecYEG channel and have identified conformational signals as checkpoints for high-fidelity targeting and translocation. The recent structural and mechanistic insights into the channel and its ATPase motor SecA are important steps towards the elucidation of the allosteric crosstalk that mediates secretion. In this Review, we discuss recent biochemical, structural and mechanistic insights into the consecutive steps of the Sec pathway - sorting and targeting, translocation and release - in both co-translational and post-translational modes of export. The architecture and conformational dynamics of the SecYEG channel and its regulation by ribosomes, SecA and pre-proteins are highlighted. Moreover, we present conceptual models of the mechanisms and energetics of the Sec-pathway dependent secretion process in bacteria.
Citations
More filters
Journal ArticleDOI
TL;DR: The known types of SS are described and the ones that have been shown to be regulated by QS are discussed, focusing mainly on Pseudomonas aeruginosa and Vibrio spp.
Abstract: Quorum sensing (QS) is a communication mechanism between bacteria that allows specific processes to be controlled, such as biofilm formation, virulence factor expression, production of secondary metabolites and stress adaptation mechanisms such as bacterial competition systems including secretion systems (SS). These SS have an important role in bacterial communication. SS are ubiquitous; they are present in both Gram-negative and Gram-positive bacteria and in Mycobacterium sp. To date, 8 types of SS have been described (T1SS, T2SS, T3SS, T4SS, T5SS, T6SS, T7SS, and T9SS). They have global functions such as the transport of proteases, lipases, adhesins, heme-binding proteins, and amidases, and specific functions such as the synthesis of proteins in host cells, adaptation to the environment, the secretion of effectors to establish an infectious niche, transfer, absorption and release of DNA, translocation of effector proteins or DNA and autotransporter secretion. All of these functions can contribute to virulence and pathogenesis. In this review, we describe the known types of SS and discuss the ones that have been shown to be regulated by QS. Due to the large amount of information about this topic in some pathogens, we focus mainly on Pseudomonas aeruginosa and Vibrio spp.

157 citations


Cites background from "Protein export through the bacteria..."

  • ...The proteins may contain a SecB-specific signal sequence for transport to the periplasm or the extracellular milieu; however, if it has the signal recognition particle (SRP) signal it can follow the SRP pathway and remain in the inner membrane (Green and Mecsas, 2016; Tsirigotaki et al., 2017)....

    [...]

Journal ArticleDOI
TL;DR: As outlined in this review, the most promising way to find the optimal signal peptide for a desired protein is to screen the largest possible diversity of signal peptides, either generated by signal peptIDE variation using large sign peptide libraries or, alternatively, by optimization of a given signal peptile using site-directed or random mutagenesis strategies.
Abstract: The secretion of biotechnologically or pharmaceutically relevant recombinant proteins into the culture supernatant of a bacterial expression host greatly facilitates their downstream processing and significantly reduces the production costs. The first step during the secretion of a desired target protein into the growth medium is its transport across the cytoplasmic membrane. In bacteria, two major export pathways, the general secretion or Sec pathway and the twin-arginine translocation or Tat pathway, exist for the transport of proteins across the plasma membrane. The routing into one of these alternative protein export systems requires the fusion of a Sec- or Tat-specific signal peptide to the amino-terminal end of the desired target protein. Since signal peptides, besides being required for the targeting to and membrane translocation by the respective protein translocases, also have additional influences on the biosynthesis, the folding kinetics, and the stability of the respective target proteins, it is not possible so far to predict in advance which signal peptide will perform best in the context of a given target protein and a given bacterial expression host. As outlined in this review, the most promising way to find the optimal signal peptide for a desired protein is to screen the largest possible diversity of signal peptides, either generated by signal peptide variation using large signal peptide libraries or, alternatively, by optimization of a given signal peptide using site-directed or random mutagenesis strategies.

151 citations


Cites background from "Protein export through the bacteria..."

  • ...1a) is the most important transport route for proteins that are exported out of the cytosol [11]....

    [...]

Journal ArticleDOI
TL;DR: This work provides the first comprehensive characterization of the genomic diversity of NTMs and open new venues for the clinical identification of opportunistic pathogens from this genus.
Abstract: Mycobacterium tuberculosis and Mycobacterium leprae have remained, for many years, the primary species of the genus Mycobacterium of clinical and microbiological interest. The other members of the genus, referred to as nontuberculous mycobacteria (NTM), have long been underinvestigated. In the last decades, however, the number of reports linking various NTM species with human diseases has steadily increased and treatment difficulties have emerged. Despite the availability of whole genome sequencing technologies, limited effort has been devoted to the genetic characterization of NTM species. As a consequence, the taxonomic and phylogenetic structure of the genus remains unsettled and genomic information is lacking to support the identification of these organisms in a clinical setting. In this work, we widen the knowledge of NTMs by reconstructing and analyzing the genomes of 41 previously uncharacterized NTM species. We provide the first comprehensive characterization of the genomic diversity of NTMs and open new venues for the clinical identification of opportunistic pathogens from this genus.

144 citations

Journal ArticleDOI
TL;DR: The reach of T2S is perhaps best illustrated by those bacteria that clearly use it for both environmental survival and virulence; e.g., L. pneumophila employs T1S for infection of amoebae, growth within lung cells, dampening of cytokines, and tissue destruction.
Abstract: Type II secretion (T2S) is one means by which Gram-negative pathogens secrete proteins into the extracellular milieu and/or host organisms. Based upon recent genome sequencing, it is clear that T2S is largely restricted to the Proteobacteria, occurring in many, but not all, genera in the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria classes. Prominent human and/or animal pathogens that express a T2S system(s) include Acinetobacter baumannii, Burkholderia pseudomallei, Chlamydia trachomatis, Escherichia coli, Klebsiella pneumoniae, Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Vibrio cholerae, and Yersinia enterocolitica T2S-expressing plant pathogens include Dickeya dadantii, Erwinia amylovora, Pectobacterium carotovorum, Ralstonia solanacearum, Xanthomonas campestris, Xanthomonas oryzae, and Xylella fastidiosa T2S also occurs in nonpathogenic bacteria, facilitating symbioses, among other things. The output of a T2S system can range from only one to dozens of secreted proteins, encompassing a diverse array of toxins, degradative enzymes, and other effectors, including novel proteins. Pathogenic processes mediated by T2S include the death of host cells, degradation of tissue, suppression of innate immunity, adherence to host surfaces, biofilm formation, invasion into and growth within host cells, nutrient assimilation, and alterations in host ion flux. The reach of T2S is perhaps best illustrated by those bacteria that clearly use it for both environmental survival and virulence; e.g., L. pneumophila employs T2S for infection of amoebae, growth within lung cells, dampening of cytokines, and tissue destruction. This minireview provides an update on the types of bacteria that have T2S, the kinds of proteins that are secreted via T2S, and how T2S substrates promote infection.

140 citations


Cites background from "Protein export through the bacteria..."

  • ..., proteins to be secreted are first carried across the inner membrane (IM) and into the periplasm by the Sec translocon (7) or Tat pathway (8) and then, after folding into a tertiary conformation (and in some instances, undergoing oligomerization), are transported across the outer membrane (OM) by the dedicated T2S apparatus (2)....

    [...]

Journal ArticleDOI
TL;DR: An overview of the functions of the passengers of the different AT classes is given, shedding more light on the variety of functions carried out by type V secretion systems.
Abstract: Bacteria secrete proteins for different purposes such as communication, virulence functions, adhesion to surfaces, nutrient acquisition, or growth inhibition of competing bacteria. For secretion of proteins, Gram-negative bacteria have evolved different secretion systems, classified as secretion systems I through IX to date. While some of these systems consist of multiple proteins building a complex spanning the cell envelope, the type V secretion system, the subject of this review, is rather minimal. Proteins of the Type V secretion system are often called autotransporters (ATs). In the simplest case, a type V secretion system consists of only one polypeptide chain with a β-barrel translocator domain in the membrane, and an extracellular passenger or effector region. Depending on the exact domain architecture of the protein, type V secretion systems can be further separated into sub-groups termed type Va through e, and possibly another recently identified subtype termed Vf. While this classification works well when it comes to the architecture of the proteins, this is not the case for the function(s) of the secreted passenger. In this review, we will give an overview of the functions of the passengers of the different AT classes, shedding more light on the variety of functions carried out by type V secretion systems.

98 citations

References
More filters
Journal ArticleDOI
21 Jul 2011-Nature
TL;DR: It is suggested that an age-related decline in proteostasis capacity allows the manifestation of various protein-aggregation diseases, including Alzheimer's disease and Parkinson's disease, which may spring from a detailed understanding of the pathways underlying proteome maintenance.
Abstract: Most proteins must fold into defined three-dimensional structures to gain functional activity. But in the cellular environment, newly synthesized proteins are at great risk of aberrant folding and aggregation, potentially forming toxic species. To avoid these dangers, cells invest in a complex network of molecular chaperones, which use ingenious mechanisms to prevent aggregation and promote efficient folding. Because protein molecules are highly dynamic, constant chaperone surveillance is required to ensure protein homeostasis (proteostasis). Recent advances suggest that an age-related decline in proteostasis capacity allows the manifestation of various protein-aggregation diseases, including Alzheimer's disease and Parkinson's disease. Interventions in these and numerous other pathological states may spring from a detailed understanding of the pathways underlying proteome maintenance.

2,803 citations

Journal ArticleDOI
01 Jan 2004-Nature
TL;DR: The crystal structure of the Sec61 or SecY complex from Methanococcus jannaschii suggests mechanisms for signal-sequence recognition and for the lateral exit of transmembrane segments of nascent membrane proteins into lipid, and indicates binding sites for partners that provide the driving force for translocation.
Abstract: A conserved heterotrimeric membrane protein complex, the Sec61 or SecY complex, forms a protein-conducting channel, allowing polypeptides to be transferred across or integrated into membranes. We report the crystal structure of the complex from Methanococcus jannaschii at a resolution of 3.2 A. The structure suggests that one copy of the heterotrimer serves as a functional translocation channel. The α-subunit has two linked halves, transmembrane segments 1–5 and 6–10, clamped together by the γ-subunit. A cytoplasmic funnel leading into the channel is plugged by a short helix. Plug displacement can open the channel into an ‘hourglass’ with a ring of hydrophobic residues at its constriction. This ring may form a seal around the translocating polypeptide, hindering the permeation of other molecules. The structure also suggests mechanisms for signal-sequence recognition and for the lateral exit of transmembrane segments of nascent membrane proteins into lipid, and indicates binding sites for partners that provide the driving force for translocation.

1,243 citations

Journal ArticleDOI

1,037 citations

Journal ArticleDOI
TL;DR: The structural and mechanistic relationships between these single- and double-membrane-embedded systems are explored, and how this knowledge can be exploited for the development of new antimicrobial strategies are discussed.
Abstract: Bacteria have evolved a remarkable array of sophisticated nanomachines to export various virulence factors across the bacterial cell envelope. In recent years, considerable progress has been made towards elucidating the structural and molecular mechanisms of the six secretion systems (types I-VI) of Gram-negative bacteria, the unique mycobacterial type VII secretion system, the chaperone-usher pathway and the curli secretion machinery. These advances have greatly enhanced our understanding of the complex mechanisms that these macromolecular structures use to deliver proteins and DNA into the extracellular environment or into target cells. In this Review, we explore the structural and mechanistic relationships between these single- and double-membrane-embedded systems, and we briefly discuss how this knowledge can be exploited for the development of new antimicrobial strategies.

792 citations

Journal ArticleDOI
13 Dec 2007-Nature
TL;DR: Using in vitro translation of a model protein in the presence of dog pancreas rough microsomes to analyse a large number of systematically designed hydrophobic segments, a quantitative analysis of the position-dependent contribution of all 20 amino acids to membrane insertion efficiency is presented.
Abstract: Transmembrane alpha-helices in integral membrane proteins are recognized co-translationally and inserted into the membrane of the endoplasmic reticulum by the Sec61 translocon. A full quantitative description of this phenomenon, linking amino acid sequence to membrane insertion efficiency, is still lacking. Here, using in vitro translation of a model protein in the presence of dog pancreas rough microsomes to analyse a large number of systematically designed hydrophobic segments, we present a quantitative analysis of the position-dependent contribution of all 20 amino acids to membrane insertion efficiency, as well as of the effects of transmembrane segment length and flanking amino acids. The emerging picture of translocon-mediated transmembrane helix assembly is simple, with the critical sequence characteristics mirroring the physical properties of the lipid bilayer.

669 citations