scispace - formally typeset
Open accessJournal ArticleDOI: 10.1016/J.MOLCEL.2020.12.025

Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination

04 Mar 2021-Molecular Cell (Cell Press)-Vol. 81, Iss: 5
Abstract: Cells have evolved an elaborate DNA repair network to ensure complete and accurate DNA replication. Defects in these repair machineries can fuel genome instability and drive carcinogenesis while creating vulnerabilities that may be exploited in therapy. Here, we use nascent chromatin capture (NCC) proteomics to characterize the repair of replication-associated DNA double-strand breaks (DSBs) triggered by topoisomerase 1 (TOP1) inhibitors. We reveal profound changes in the fork proteome, including the chromatin environment and nuclear membrane interactions, and identify three classes of repair factors according to their enrichment at broken and/or stalled forks. ATM inhibition dramatically rewired the broken fork proteome, revealing that ataxia telangiectasia mutated (ATM) signalling stimulates DNA end resection, recruits PLK1, and concomitantly suppresses the canonical DSB ubiquitination response by preventing accumulation of RNF168 and BRCA1-A. This work and collection of replication fork proteomes provide a new framework to understand how cells orchestrate homologous recombination repair of replication-associated DSBs.

... read more

Topics: DNA repair (62%), DNA replication (57%), Genome instability (57%) ... read more

10 results found

Open accessJournal ArticleDOI: 10.1016/S1470-2045(21)00376-4
01 Sep 2021-Lancet Oncology
Abstract: Summary Background Poly(ADP-ribose) polymerase (PARP) inhibitors have antitumour activity against metastatic castration-resistant prostate cancers with DNA damage response (DDR) alterations in genes involved directly or indirectly in homologous recombination repair (HRR). In this study, we assessed the PARP inhibitor talazoparib in metastatic castration-resistant prostate cancers with DDR-HRR alterations. Methods In this open-label, phase 2 trial (TALAPRO-1), participants were recruited from 43 hospitals, cancer centres, and medical centres in Australia, Austria, Belgium, Brazil, France, Germany, Hungary, Italy, the Netherlands, Poland, Spain, South Korea, the UK, and the USA. Patients were eligible if they were men aged 18 years or older with progressive, metastatic, castration-resistant prostate cancers of adenocarcinoma histology, measurable soft-tissue disease (per Response Evaluation Criteria in Solid Tumors version 1.1 [RECIST 1.1]), an Eastern Cooperative Oncology Group performance status of 0–2, DDR-HRR gene alterations reported to sensitise to PARP inhibitors (ie, ATM, ATR, BRCA1, BRCA2, CHEK2, FANCA, MLH1, MRE11A, NBN, PALB2, RAD51C), had received one or two taxane-based chemotherapy regimens for metastatic disease, and progressed on enzalutamide or abiraterone, or both, for metastatic castration-resistant prostate cancers. Eligible patients were given oral talazoparib (1 mg per day; or 0·75 mg per day in patients with moderate renal impairment) until disease progression, unacceptable toxicity, investigator decision, withdrawal of consent, or death. The primary endpoint was confirmed objective response rate, defined as best overall soft-tissue response of complete or partial response per RECIST 1.1, by blinded independent central review. The primary endpoint was assessed in patients who received study drug, had measurable soft-tissue disease, and had a gene alteration in one of the predefined DDR-HRR genes. Safety was assessed in all patients who received at least one dose of the study drug. This study is registered with , NCT03148795 , and is ongoing. Findings Between Oct 18, 2017, and March 20, 2020, 128 patients were enrolled, of whom 127 received at least one dose of talazoparib (safety population) and 104 had measurable soft-tissue disease (antitumour activity population). Data cutoff for this analysis was Sept 4, 2020. After a median follow-up of 16·4 months (IQR 11·1–22·1), the objective response rate was 29·8% (31 of 104 patients; 95% CI 21·2–39·6). The most common grade 3–4 treatment-emergent adverse events were anaemia (39 [31%] of 127 patients), thrombocytopenia (11 [9%]), and neutropenia (ten [8%]). Serious treatment-emergent adverse events were reported in 43 (34%) patients. There were no treatment-related deaths. Interpretation Talazoparib showed durable antitumour activity in men with advanced metastatic castration-resistant prostate cancers with DDR-HRR gene alterations who had been heavily pretreated. The favourable benefit–risk profile supports the study of talazoparib in larger, randomised clinical trials, including in patients with non-BRCA alterations. Funding Pfizer/Medivation.

... read more

Topics: Enzalutamide (55%), Response Evaluation Criteria in Solid Tumors (55%), Prostate cancer (53%) ... read more

5 Citations

Journal ArticleDOI: 10.1038/S41580-021-00394-2
Ji-Hoon Lee1, Tanya T. Paull1Institutions (1)
Abstract: The protein kinase ataxia telangiectasia mutated (ATM) is a master regulator of double-strand DNA break (DSB) signalling and stress responses. For three decades, ATM has been investigated extensively to elucidate its roles in the DNA damage response (DDR) and in the pathogenesis of ataxia telangiectasia (A-T), a human neurodegenerative disease caused by loss of ATM. Although hundreds of proteins have been identified as ATM phosphorylation targets and many important roles for this kinase have been identified, it is still unclear how ATM deficiency leads to the early-onset cerebellar degeneration that is common in all individuals with A-T. Recent studies suggest the existence of links between ATM deficiency and other cerebellum-specific neurological disorders, as well as the existence of broader similarities with more common neurodegenerative disorders. In this Review, we discuss recent structural insights into ATM regulation, and possible aetiologies of A-T phenotypes, including reactive oxygen species, mitochondrial dysfunction, alterations in transcription, R-loop metabolism and alternative splicing, defects in cellular proteostasis and metabolism, and potential pathogenic roles for hyper-poly(ADP-ribosyl)ation.

... read more

Topics: Ataxia-telangiectasia (65%), Proteostasis (53%)

3 Citations

Journal ArticleDOI: 10.1016/J.GDE.2021.05.006
Priyanka Verma1, Roger A. Greenberg1Institutions (1)
Abstract: Higher-order chromatin packing serves as a structural barrier to the recognition and repair of genomic lesions. The initiation and outcome of the repair response is dictated by a highly coordinated yet complex interplay between chromatin modifying enzymes and their cognate readers, damage induced chemical modifications, nucleosome density, transcriptional state, and cell cycle-dependent availability of DNA repair machinery. The physical and chemical properties of the DNA lesions themselves further regulate the nature of ensuing chromatin responses. Here we review recent discoveries across these various contexts, where chromatin regulates the homology-guided double-strand break repair mechanism, homologous recombination, and also highlight the key knowledge gaps vital to generate a holistic understanding of this process and its contributions to genome integrity.

... read more

Topics: Chromatin (63%), DNA repair (57%), Nucleosome (56%) ... read more

1 Citations

Open accessPosted ContentDOI: 10.1101/2021.03.17.435897
Yuchen Yang1, Jayaprakash D1, Hollingworth R2, Chen S  +13 moreInstitutions (6)
18 Mar 2021-bioRxiv
Abstract: The E3 ligase RNF168 has been suggested to have roles at DNA replication forks in addition to its canonical functions in DNA double-strand break (DSB) signaling. However, the precise role of RNF168 in DNA replication remains unclear. Here we demonstrate that RNF168 is recruited to DNA replication factories independent of the canonical DSB response pathway regulators and identify a degenerate PCNA-Interacting Peptide (DPIP) motif in the C-terminus of RNF168 which mediates its binding to PCNA. An RNF168 mutant harboring substitutions in the DPIP box fails to interact with PCNA and is not recruited to sites of DNA synthesis, yet fully retains its ability to promote DSB-induced 53BP1 foci. Surprisingly, the RNF168 DPIP mutant also retains the ability to support ongoing DNA replication fork movement, demonstrating that PCNA-binding is dispensable for normal S-phase functions. However, replisome-associated RNF168 functions to suppress the DSB-induced 53BP1 DNA damage response during S-phase. Moreover, we show that WT RNF168 can perform PCNA ubiquitylation independently of RAD18 and also synergizes with RAD18 to amplify PCNA ubiquitylation. Taken together, our results identify non-canonical functions of RNF168 at the replication fork and demonstrate new mechanisms of cross talk between the DNA damage and replication stress response pathways.

... read more

Topics: DNA Replication Fork (67%), DNA replication (63%), DNA damage (57%) ... read more

Open accessJournal ArticleDOI: 10.1186/S12929-021-00743-5
Abstract: Accurate and complete replication of the genome is essential not only for genome stability but also for cell viability. However, cells face constant threats to the replication process, such as spontaneous DNA modifications and DNA lesions from endogenous and external sources. Any obstacle that slows down replication forks or perturbs replication dynamics is generally considered to be a form of replication stress, and the past decade has seen numerous advances in our understanding of how cells respond to and resolve such challenges. Furthermore, recent studies have also uncovered links between defects in replication stress responses and genome instability or various diseases, such as cancer. Because replication stress takes place in the context of chromatin, histone dynamics play key roles in modulating fork progression and replication stress responses. Here, we summarize the current understanding of histone dynamics in replication stress, highlighting recent advances in the characterization of fork-protective mechanisms.

... read more

Topics: DNA replication (62%), Chromatin (54%), Genome instability (52%) ... read more


90 results found

Journal ArticleDOI: 10.1038/NPROT.2008.211
01 Jan 2009-Nature Protocols
Abstract: DAVID bioinformatics resources consists of an integrated biological knowledgebase and analytic tools aimed at systematically extracting biological meaning from large gene/protein lists. This protocol explains how to use DAVID, a high-throughput and integrated data-mining environment, to analyze gene lists derived from high-throughput genomic experiments. The procedure first requires uploading a gene list containing any number of common gene identifiers followed by analysis using one or more text and pathway-mining tools such as gene functional classification, functional annotation chart or clustering and functional annotation table. By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.

... read more

27,356 Citations

Open accessJournal ArticleDOI: 10.1101/GR.1239303
Paul Shannon1, Andrew Markiel, Owen Ozier, Nitin S. Baliga  +5 moreInstitutions (1)
01 Nov 2003-Genome Research
Abstract: Cytoscape is an open source software project for integrating biomolecular interaction networks with high-throughput expression data and other molecular states into a unified conceptual framework. Although applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in conjunction with large databases of protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans and model organisms. Cytoscape's software Core provides basic functionality to layout and query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular states; and to link the network to databases of functional annotations. The Core is extensible through a straightforward plug-in architecture, allowing rapid development of additional computational analyses and features. Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.

... read more

Topics: Interaction network (60%), ConsensusPathDB (55%), Human interactome (53%) ... read more

23,868 Citations

Open accessJournal ArticleDOI: 10.1093/NAR/GKN923
Abstract: Functional analysis of large gene lists, derived in most cases from emerging high-throughput genomic, proteomic and bioinformatics scanning approaches, is still a challenging and daunting task. The gene-annotation enrichment analysis is a promising high-throughput strategy that increases the likelihood for investigators to identify biological processes most pertinent to their study. Approximately 68 bioinformatics enrichment tools that are currently available in the community are collected in this survey. Tools are uniquely categorized into three major classes, according to their underlying enrichment algorithms. The comprehensive collections, unique tool classifications and associated questions/issues will provide a more comprehensive and up-to-date view regarding the advantages, pitfalls and recent trends in a simpler tool-class level rather than by a tool-by-tool approach. Thus, the survey will help tool designers/developers and experienced end users understand the underlying algorithms and pertinent details of particular tool categories/tools, enabling them to make the best choices for their particular research interests.

... read more

11,360 Citations

Journal ArticleDOI: 10.1038/NBT.1511
Jiirgen Cox1, Matthias Mann1Institutions (1)
Abstract: Efficient analysis of very large amounts of raw data for peptide identification and protein quantification is a principal challenge in mass spectrometry (MS)-based proteomics. Here we describe MaxQuant, an integrated suite of algorithms specifically developed for high-resolution, quantitative MS data. Using correlation analysis and graph theory, MaxQuant detects peaks, isotope clusters and stable amino acid isotope-labeled (SILAC) peptide pairs as three-dimensional objects in m/z, elution time and signal intensity space. By integrating multiple mass measurements and correcting for linear and nonlinear mass offsets, we achieve mass accuracy in the p.p.b. range, a sixfold increase over standard techniques. We increase the proportion of identified fragmentation spectra to 73% for SILAC peptide pairs via unambiguous assignment of isotope and missed-cleavage state and individual mass precision. MaxQuant automatically quantifies several hundred thousand peptides per SILAC-proteome experiment and allows statistically robust identification and quantification of >4,000 proteins in mammalian cell lysates.

... read more

10,058 Citations

Open accessJournal ArticleDOI: 10.1074/MCP.M200025-MCP200
Abstract: Quantitative proteomics has traditionally been performed by two-dimensional gel electrophoresis, but recently, mass spectrometric methods based on stable isotope quantitation have shown great promise for the simultaneous and automated identification and quantitation of complex protein mixtures. Here we describe a method, termed SILAC, for stable isotope labeling by amino acids in cell culture, for the in vivo incorporation of specific amino acids into all mammalian proteins. Mammalian cell lines are grown in media lacking a standard essential amino acid but supplemented with a non-radioactive, isotopically labeled form of that amino acid, in this case deuterated leucine (Leu-d3). We find that growth of cells maintained in these media is no different from growth in normal media as evidenced by cell morphology, doubling time, and ability to differentiate. Complete incorporation of Leu-d3 occurred after five doublings in the cell lines and proteins studied. Protein populations from experimental and control samples are mixed directly after harvesting, and mass spectrometric identification is straightforward as every leucine-containing peptide incorporates either all normal leucine or all Leu-d3. We have applied this technique to the relative quantitation of changes in protein expression during the process of muscle cell differentiation. Proteins that were found to be up-regulated during this process include glyceraldehyde-3-phosphate dehydrogenase, fibronectin, and pyruvate kinase M2. SILAC is a simple, inexpensive, and accurate procedure that can be used as a quantitative proteomic approach in any cell culture system.

... read more

5,385 Citations

No. of citations received by the Paper in previous years