scispace - formally typeset
Search or ask a question
Posted Content

Pseudo-Representation Labeling Semi-Supervised Learning.

TL;DR: The pseudo-representation labeling is a simple and flexible framework that utilizes pseudo-labeling techniques to iteratively label a small amount of unlabeled data and use them as training data and outperforms the current state-of-the-art semi-supervised learning methods in industrial types of classification problems such as the WM-811K wafer map and the MIT-BIH Arrhythmia dataset.
Abstract: In recent years, semi-supervised learning (SSL) has shown tremendous success in leveraging unlabeled data to improve the performance of deep learning models, which significantly reduces the demand for large amounts of labeled data. Many SSL techniques have been proposed and have shown promising performance on famous datasets such as ImageNet and CIFAR-10. However, some exiting techniques (especially data augmentation based) are not suitable for industrial applications empirically. Therefore, this work proposes the pseudo-representation labeling, a simple and flexible framework that utilizes pseudo-labeling techniques to iteratively label a small amount of unlabeled data and use them as training data. In addition, our framework is integrated with self-supervised representation learning such that the classifier gains benefits from representation learning of both labeled and unlabeled data. This framework can be implemented without being limited at the specific model structure, but a general technique to improve the existing model. Compared with the existing approaches, the pseudo-representation labeling is more intuitive and can effectively solve practical problems in the real world. Empirically, it outperforms the current state-of-the-art semi-supervised learning methods in industrial types of classification problems such as the WM-811K wafer map and the MIT-BIH Arrhythmia dataset.
Citations
More filters
Proceedings ArticleDOI
01 Jun 2021
TL;DR: Xia et al. as discussed by the authors proposed a cross-domain adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains.
Abstract: In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of "labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.

57 citations

References
More filters
Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations


"Pseudo-Representation Labeling Semi..." refers background in this paper

  • ...Deep neural networks have achieved outstanding results in lots of computer vision challenge, such as object detection [8], image classification [5], object segmentation [17], and so on....

    [...]

Proceedings Article
01 Jan 2014
TL;DR: A stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case is introduced.
Abstract: How can we perform efficient inference and learning in directed probabilistic models, in the presence of continuous latent variables with intractable posterior distributions, and large datasets? We introduce a stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case. Our contributions is two-fold. First, we show that a reparameterization of the variational lower bound yields a lower bound estimator that can be straightforwardly optimized using standard stochastic gradient methods. Second, we show that for i.i.d. datasets with continuous latent variables per datapoint, posterior inference can be made especially efficient by fitting an approximate inference model (also called a recognition model) to the intractable posterior using the proposed lower bound estimator. Theoretical advantages are reflected in experimental results.

20,769 citations


"Pseudo-Representation Labeling Semi..." refers background in this paper

  • ...Variational auto-encoder (VAE) [10] may be a solution to make feature space data augmentation more reasonable....

    [...]

  • ...Thus, we adopt Mixup by VAE to perform data augmentation at the embedding layer instead of the input layer in the framework....

    [...]

Posted Content
TL;DR: This work proposes a simple modification to recover the original formulation of weight decay regularization by decoupling the weight decay from the optimization steps taken w.r.t. the loss function, and provides empirical evidence that this modification substantially improves Adam's generalization performance.
Abstract: L$_2$ regularization and weight decay regularization are equivalent for standard stochastic gradient descent (when rescaled by the learning rate), but as we demonstrate this is \emph{not} the case for adaptive gradient algorithms, such as Adam. While common implementations of these algorithms employ L$_2$ regularization (often calling it "weight decay" in what may be misleading due to the inequivalence we expose), we propose a simple modification to recover the original formulation of weight decay regularization by \emph{decoupling} the weight decay from the optimization steps taken w.r.t. the loss function. We provide empirical evidence that our proposed modification (i) decouples the optimal choice of weight decay factor from the setting of the learning rate for both standard SGD and Adam and (ii) substantially improves Adam's generalization performance, allowing it to compete with SGD with momentum on image classification datasets (on which it was previously typically outperformed by the latter). Our proposed decoupled weight decay has already been adopted by many researchers, and the community has implemented it in TensorFlow and PyTorch; the complete source code for our experiments is available at this https URL

6,909 citations


Additional excerpts

  • ...Many new techniques have also been discussed in recent years, such as [16, 13, 14]....

    [...]

Journal ArticleDOI
TL;DR: A review of the Pascal Visual Object Classes challenge from 2008-2012 and an appraisal of the aspects of the challenge that worked well, and those that could be improved in future challenges.
Abstract: The Pascal Visual Object Classes (VOC) challenge consists of two components: (i) a publicly available dataset of images together with ground truth annotation and standardised evaluation software; and (ii) an annual competition and workshop. There are five challenges: classification, detection, segmentation, action classification, and person layout. In this paper we provide a review of the challenge from 2008---2012. The paper is intended for two audiences: algorithm designers, researchers who want to see what the state of the art is, as measured by performance on the VOC datasets, along with the limitations and weak points of the current generation of algorithms; and, challenge designers, who want to see what we as organisers have learnt from the process and our recommendations for the organisation of future challenges. To analyse the performance of submitted algorithms on the VOC datasets we introduce a number of novel evaluation methods: a bootstrapping method for determining whether differences in the performance of two algorithms are significant or not; a normalised average precision so that performance can be compared across classes with different proportions of positive instances; a clustering method for visualising the performance across multiple algorithms so that the hard and easy images can be identified; and the use of a joint classifier over the submitted algorithms in order to measure their complementarity and combined performance. We also analyse the community's progress through time using the methods of Hoiem et al. (Proceedings of European Conference on Computer Vision, 2012) to identify the types of occurring errors. We conclude the paper with an appraisal of the aspects of the challenge that worked well, and those that could be improved in future challenges.

6,061 citations


"Pseudo-Representation Labeling Semi..." refers background in this paper

  • ...Deep neural networks have achieved outstanding results in lots of computer vision challenge, such as object detection [8], image classification [5], object segmentation [17], and so on....

    [...]

Posted Content
TL;DR: In this paper, a stochastic variational inference and learning algorithm was proposed for directed probabilistic models with intractable posterior distributions and large datasets, which scales to large datasets.
Abstract: How can we perform efficient inference and learning in directed probabilistic models, in the presence of continuous latent variables with intractable posterior distributions, and large datasets? We introduce a stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case. Our contributions is two-fold. First, we show that a reparameterization of the variational lower bound yields a lower bound estimator that can be straightforwardly optimized using standard stochastic gradient methods. Second, we show that for i.i.d. datasets with continuous latent variables per datapoint, posterior inference can be made especially efficient by fitting an approximate inference model (also called a recognition model) to the intractable posterior using the proposed lower bound estimator. Theoretical advantages are reflected in experimental results.

4,883 citations