scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Purification and Characterization of Fatty Acid-Binding Proteins from Human Fetal Lung

01 Jul 1989-Experimental Lung Research (Taylor & Francis)-Vol. 15, Iss: 4, pp 619-634
TL;DR: Defatted lung FABP reverses the inhibitory effect of palmitoyl coenzyme A (CoA) (PAL- CoA) on lung glucose-6-phosphate dehydrogenase (G6PD), a key enzyme of the hexose monophosphate (HMP) shunt pathway in vitro.
Abstract: Fatty acid-binding protein (FABP) was isolated, purified, and characterized from developing human fetal lung cytosol by gel filtration and ion-exchange chromatography. FABP exists in three immunochemically identical forms, DE-I, DE-II, and DE-III, having Mr 15,200 ± 200 each and isoelectric pH 7.8, 6.9, and 5.4, respectively. DE-I is almost lipid-free, DE-II binds mainly long-chain unsaturated fatty acids, and DE-III is an arachi-donic acid carrier. One mole of DE-II and DE-III each binds 1 mol of fatty acids noncov-alently. Concentrations of all these FABPs increase gradually from early gestation to term. Defatted lung FABP reverses the inhibitory effect of palmitoyl coenzyme A (CoA) (PAL-CoA) on lung glucose-6-phosphate dehydrogenase (G6PD), a key enzyme of the hexose monophosphate (HMP) shunt pathway. This protein when added alone activates the enzyme, suggesting that the original submaximal activity is probably due to the presence of endogenous long-chain fatty acyl CoA esters in the cytosols. As FABP...
Citations
More filters
Journal ArticleDOI
TL;DR: Article de synthese sur les donnees recentes de caracteristiques structurales et physicochimiques de divers types of proteines de liaison aux acides gras, avec la signification physiologique de ces diversites.
Abstract: Article de synthese sur les donnees recentes de caracteristiques structurales et physicochimiques de divers types de proteines de liaison aux acides gras, avec la signification physiologique de ces diversites

366 citations

Journal ArticleDOI
TL;DR: The strengths and weaknesses of H-FABP as a clinically applicable marker of myocyte necrosis in the context of acute coronary syndromes are reviewed.
Abstract: Heart fatty-acid-binding protein (FABP) is a small cytosolic protein that is abundant in the heart and has low concentrations in the blood and in tissues outside the heart. It appears in the blood as early as 1.5 h after onset of symptoms of infarction, peaks around 6 h and returns to baseline values in 24 h. These features of H-FABP make it an excellent potential candidate for the detection of acute myocardial infarction (AMI). We review the strengths and weaknesses of H-FABP as a clinically applicable marker of myocyte necrosis in the context of acute coronary syndromes.

147 citations

Journal ArticleDOI
TL;DR: Which FABPs form biochemically defined or true isoforms versus FABP that form additional forms, operationally defined as isoforms, is critically evaluated.
Abstract: Although structural aspects of cytosolic fatty acid binding proteins (FABPs) in mammalian tissues are now well understood, significant advances regarding the physiological function(s) of these proteins have been slow in forthcoming. Part of the difficulty lies in the complexity of the multigene FABP family with nearly twenty identified members. Furthermore, isoelectric focusing and ion exchange chromatography operationally resolve many of the mammalian native FABPs into putative isoforms. However, a more classical biochemical definition of an isoform, i.e. proteins differing by a single amino acid, suggests that the operational definition is too broad. Because at least one putative heart H-FABP isoform, the mammary derived growth inhibitor, was an artifact (Specht et al. (1996) J. Biol. Chem. 271: 1943-49), the ensuing skepticism and confusion cast doubt on the existence of FABP isoforms in general. Yet, increasing data suggest that several FABPs, e.g. human intestinal I-FABP, bovine and mouse heart H-FABP, rabbit myelin P2 protein and bovine liver L-FABP may exist as true isoforms. In contrast, the rat liver L-FABP putative isoforms may actually be due either to bound ligand, post-translational S-thiolation and/or structural conformers. In any case, almost nothing is known regarding possible functions of either the true or putative isoforms in vitro or in vivo. The objective of this article is to critically evaluate which FABPs form biochemically defined or true isoforms versus FABPs that form additional forms, operationally defined as isoforms. In addition, recent developments in the molecular basis for FABP true isoform formation, the processes leading to additional operationally defined putative isoforms and insights into potential function(s) of this unusual aspect of FABP heterogeneity will be examined.

127 citations

Journal ArticleDOI
01 Sep 1996-Lipids
TL;DR: The identity, nature, function, and pathobiology of these fascinating newly discovered long-chain fatty acyl-CoA binding proteins are explored.
Abstract: The physiological role of long-chain fatty acyl-CoA is thought to be primarily in intermediary metabolism of fatty acids. However, recent data show that nM to μM levels of these lipophilic molecules are potent regulators of cell functionsin vitro. Although long-chain fatty acyl-CoA are present at several hundred μM concentration in the cell, very little long-chain fatty acyl-CoA actually exists as free or unbound molecules, but rather is bound with high affinity to membrane lipids and/or proteins. Recently, there is growing awareness that cytosol contains nonenzymatic proteins also capable of binding long-chain fatty acyl-CoA with high affinity. Although the identity of the cytosolic long-chain fatty acyl-CoA binding protein(s) has been the subject of some controversy, there is growing evidence that several diverse nonenzymatic cytosolic proteins will bind long-chain fatty acyl-CoA. Not only does acyl-CoA binding protein specifically bind medium and long-chain fatty acyl-CoA (LCFA-CoA), but ubiquitous proteins with multiple ligand specificities such as the fatty acid binding proteins and sterol carrier protein-2 also bind LCFA-CoA with high affinity. The potential of these acyl-CoA binding proteins to influence the level of free LCFA-CoA and thereby the amount of LCFA-CoA bound to regulatory sites in proteins and enzymes is only now being examined in detail. The purpose of this article is to explore the identity, nature, function, and pathobiology of these fascinating newly discovered long-chain fatty acyl-CoA binding proteins. The relative contributions of these three different protein families to LCFA-CoA utilization and/or regulation of cellular activities are the focus of new directions in this field.

126 citations

Journal ArticleDOI
TL;DR: Current knowledge suggests that the function of this set of proteins reaches beyond simply aiding cytoplasmic solubilization of hydrophobic ligands, but that they can be assigned several regulatory roles in cellular lipid homeostasis.
Abstract: At least three different proteins are implicated in the cellular transport of fatty acid moieties: a plasmalemmal membrane and a cytoplasmic fatty acid-binding protein (FABPPM and FABPC, respectively) and cytoplasmic acyl-CoA binding protein (ACBP). Their putative main physiological significance is the assurance that long-chain fatty acids and derivatives, either in transit through membranes or present in intracellular compartments, are largely complexed to proteins. FABPC distinguishes from the other proteins in that distinct types of FABPC are found in remarkable abundance in the cytoplasmic compartment of a variety of tissues. Although their mechanism of action is not yet fully elucidated, current knowledge suggests that the function of this set of proteins reaches beyond simply aiding cytoplasmic solubilization of hydrophobic ligands, but that they can be assigned several regulatory roles in cellular lipid homeostasis.

111 citations


Cites background from "Purification and Characterization o..."

  • ...FABPs obtained from the same tissue and differing in the amount and type of endogenously bound fatty acids but not in amino acid composition, have improperly also been designated as isoforms [24, 36-38]....

    [...]

References
More filters
Journal Article
TL;DR: Procedures are described for measuring protein in solution or after precipitation with acids or other agents, and for the determination of as little as 0.2 gamma of protein.
Abstract: Since 1922 when Wu proposed the use of the Folin phenol reagent for the measurement of proteins, a number of modified analytical procedures utilizing this reagent have been reported for the determination of proteins in serum, in antigen-antibody precipitates, and in insulin. Although the reagent would seem to be recommended by its great sensitivity and the simplicity of procedure possible with its use, it has not found great favor for general biochemical purposes. In the belief that this reagent, nevertheless, has considerable merit for certain application, but that its peculiarities and limitations need to be understood for its fullest exploitation, it has been studied with regard to effects of variations in pH, time of reaction, and concentration of reactants, permissible levels of reagents commonly used in handling proteins, and interfering substances. Procedures are described for measuring protein in solution or after precipitation with acids or other agents, and for the determination of as little as 0.2 gamma of protein.

289,852 citations

Journal ArticleDOI
TL;DR: In this paper, the authors described a simplified version of the method and reported the results of a study of its application to different tissues, including the efficiency of the washing procedure in terms of the removal from tissue lipides of some non-lipide substances of special biochemical interest.
Abstract: Work from this laboratory resulted in the development of a method for the preparation and purification of brain lipides (1) which involved two successive operations. In the first step, the lipides were extracted by homogenizing the tissue with 2: 1 chloroform-methanol (v/v), and filtering the homogenate. In the second step, the filtrate, which contained the tissue lipides accompanied by non-lipide substances, was freed from these substances by being placed in contact with at least 5-fold its volume of water. This water washing entailed the loss of about 1 per cent of the brain lipides. This paper describes a simplified version of the method and reports the results of a study of its application to different tissues, including the efficiency of the washing procedure in terms of the removal from tissue lipides of some non-lipide substances of special biochemical interest. It also reports some pertinent ancillary findings. The modifications introduced into the method pertain only to the washing procedure. A chloroformmethanol extract of the tissue, prepared as described in the original version of the method, is mixed with 0.2 its volume of water to which, for certain purposes, different mineral salts may be added. A biphasic system without any interfacial fluff is obtained (2). The upper phase contains all of the non-lipide substances, most of the strandin, and only negligible amounts of the other lipides. The lower phase contains essentially all the tissue lipides other than strandin. In comparison with the original method, the present version has the advantage of being simpler, of being applicable to any scale desired, of substantially decreasing the losses of lipides incidental to the washing process, and, finally, of yielding a washed extract which can be taken to dryness without foaming and without splitting of the proteolipides (3).

59,550 citations

Journal ArticleDOI
TL;DR: Pulse-chase experiments in wild-type and mutant phage-infected cells provide evidence that the following particles called prohead I, II and III are successive precursors to the mature heads as discussed by the authors.
Abstract: Pulse-chase experiments in wild-type and mutant phage-infected cells provide evidence that the following particles called prohead I, II and III are successive precursors to the mature heads. The prohead I particles contain predominantly the precursor protein P23 and possibly P22 (mol. wt 31,000) and IP III (mol. wt 24,000) and have an s value of about 400 S. Concomitantly with the cleavage of most of P23 (mol. wt 55,000) to P23∗ (mol. wt 45,000), they are rapidly converted into prohead II particles which sediment with about 350 S. The prohead II particles contain, in addition to P23∗, the major constituents of the viral shella—a core consisting of proteins P22 and IP III. In cell lysates, prohead I and prohead II particles contain no DNA in a DNase-resistant form and are not bound to the replicative DNA. We cannot, however, positively rule out the possibility that these particles may have contained some DNA while in the cells. The prohead II particles are in turn converted into particles which sediment with about 550 S after DNase treatment (prohead III). During this conversion about 50% of normal DNA complement becomes packaged in a DNase-resistant form, and roughly 50% of the core proteins P22 and IP III are cleaved. In lysates the prohead III particles are attached to the replicative DNA. The prohead III particle appears to be the immediate precursor of the full mature head (1100 S). Cleavage of protein P22 to small polypeptides and conversion of IP III IP III∗ are completed at this time. No precursor proteins are found in the full heads. Studies with various mutant phage showed that the prohead II to III conversion is blocked by mutations in genes 16 and 17 and that the conversion of the prohead III particles to the mature heads is blocked by mutations in gene 49. Cleavage of the head proteins, however, occurs normally in these mutant-infected cells. We conclude that the cleavage of the major component of the viral shell, P23, into P23∗ precedes the DNA packaging event, whereas cleavage of the core proteins P22 and IP III appears to be intimately linked to the DNA packaging event. Models relating the cleavage processes to DNA encapsulation are discussed.

3,697 citations

Book ChapterDOI
01 Jan 1974
TL;DR: G6P-DH is inhibited by primaquine and other 8-aminoquinolines (antimalarial drugs) in millimolar concentration, as well as by phenylhydrazine, Nevertheless, the therapeutic concentration of these substances is more than tenfold lower and therefore, they have no significant effect on the measurements.
Abstract: Publisher Summary This chapter discusses glucose-6-phosphate dehydrogenase (G6P-DH), which was first isolated from erythrocytes and from fermenting yeast by Warburg et al., who carried out an extensive purification and characterization of the enzyme. Blood cells, adipose tissue, and lactating mammary gland are especially rich sources of the enzyme. Some human and animal tumors contain high activity of the enzyme. G6P-DH is applied in biochemistry and clinical chemistry. Triethanolamine buffer (50 mM, pH 7.5) containing 5 mM EDTA has proved best. Measurements are made on tissue samples with 0.67 mM G-6-P and 0.5 mM NADP, which are optimum concentrations for the enzyme from erythrocytes. G6P-DH is inhibited by primaquine and other 8-aminoquinolines (antimalarial drugs) in millimolar concentration, as well as by phenylhydrazine. Nevertheless, the therapeutic concentration of these substances is more than tenfold lower and therefore, they have no significant effect on the measurements.

1,225 citations