scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Purification of metal electroplating waste waters using zeolites

01 Dec 2003-Water Research (Pergamon)-Vol. 37, Iss: 20, pp 4855-4862
TL;DR: This mineral showed the same high sorption capacity values when used in the purification of metal electroplating waste waters, appearing, therefore, as most suitable to perform metal waste water purification processes.
About: This article is published in Water Research.The article was published on 2003-12-01. It has received 482 citations till now. The article focuses on the topics: Sorption.
Citations
More filters
Journal ArticleDOI
TL;DR: A review of the recent development of natural zeolites as adsorbents in water and wastewater treatment can be found in this paper, where the properties and modification of natural zerosite are discussed and the modified zerosites achieving higher adsorption capacity for organics and anions.

1,794 citations


Cites background from "Purification of metal electroplatin..."

  • ...[95] studied the sorption behaviour of natural clinoptilolite and synthetic NaP1 zeolites for Cr3+, Ni2+, Zn2+, Cu2+ and Cd2+ in purification of metal finishing wastewaters....

    [...]

  • ...237 [95] Ni2+ 0....

    [...]

Journal ArticleDOI
TL;DR: In this article, the technical applicability of various physico-chemical treatments for the removal of heavy metals such as Cd(II), Cr(III, Cr(VI), Cu(II, Ni(II) and Zn(II).

1,732 citations

Journal ArticleDOI
TL;DR: Nanomaterials in various shapes/morphologies, such as nanoparticles, tubes, wires, fibres etc., function as adsorbents and catalysts and their composites with polymers are used for the detection and removal of gases (SO2, CO, NOx, etc.), contaminated chemicals (arsenic, iron, manganese, nitrate, heavy metals, etc.).
Abstract: This article gives an overview of the application of nanomaterials in environmental remediation. In the area of environmental remediation, nanomaterials offer the potential for the efficient removal of pollutants and biological contaminants. Nanomaterials in various shapes/morphologies, such as nanoparticles, tubes, wires, fibres etc., function as adsorbents and catalysts and their composites with polymers are used for the detection and removal of gases (SO2, CO, NOx, etc.), contaminated chemicals (arsenic, iron, manganese, nitrate, heavy metals, etc.), organic pollutants (aliphatic and aromatic hydrocarbons) and biological substances, such as viruses, bacteria, parasites and antibiotics. Nanomaterials show a better performance in environmental remediation than other conventional techniques because of their high surface area (surface-to-volume ratio) and their associated high reactivity. Recent advances in the fabrication of novel nanoscale materials and processes for the treatment of drinking water and industrial waste water contaminated by toxic metal ions, radionuclides, organic and inorganic solutes, bacteria and viruses and the treatment of air are highlighted. In addition, recent advances in the application of polymer nanocomposite materials for the treatment of contaminants and the monitoring of pollutants are also discussed. Furthermore, the research trends and future prospects are briefly discussed.

1,144 citations

Journal ArticleDOI
TL;DR: The heavy metal adsorption capacities for these modified cellulose materials were found to be significant and levels of uptake were comparable, in many instances, to both other naturally occurring adsorbent materials and commercial ion exchange type resins.

1,127 citations

Journal ArticleDOI
TL;DR: In this paper, an overview of the use of nanomaterials in water purification can be found, highlighting recent advances on the development of novel nanoscale materials and processes for treatment of surface water, groundwater and industrial wastewater contaminated by toxic metal ions, radionuclides, organic and inorganic solutes, bacteria and viruses.
Abstract: Advances in nanoscale science and engineering suggest that many of the current problems involving water quality could be resolved or greatly ameliorated using nanosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes and nanoparticle enhanced filtration among other products and processes resulting from the development of nanotechnology. Innovations in the development of novel technologies to desalinate water are among the most exciting and promising. Additionally, nanotechnology-derived products that reduce the concentrations of toxic compounds to sub-ppb levels can assist in the attainment of water quality standards and health advisories. This article gives an overview of the use of nanomaterials in water purification. We highlight recent advances on the development of novel nanoscale materials and processes for treatment of surface water, groundwater and industrial wastewater contaminated by toxic metal ions, radionuclides, organic and inorganic solutes, bacteria and viruses. In addition, we discuss some challenges associated with the development of cost effective and environmentally acceptable functional nanomaterials for water purification.

1,099 citations


Cites background from "Purification of metal electroplatin..."

  • ...Alvarez-Ayuso et al. (2003) reported the successful use of synthetic NaP1 zeolites to remove Cr(III), Ni(II), Zn(II), Cu(II) and Cd(II) from metal electroplating wastewaters....

    [...]

References
More filters
Book
01 Jan 1984
TL;DR: The Biosphere The Anthroposphere Soils and Soil Processes Weathering Processes Pedogenic Processes Soil Constituents Trace Elements Minerals Organic Matter Organisms in Soils Trace Elements in Plants.
Abstract: Chapter 1 The Biosphere Chapter 2 The Anthroposphere Introduction Air Pollution Water Pollution Soil Plants Chapter 3 Soils and Soil Processes Introduction Weathering Processes Pedogenic Processes Chapter 4 Soil Constituents Introduction Trace Elements Minerals Organic Matter Organisms in Soils Chapter 5 Trace Elements in Plants Introduction Absorption Translocation Availability Essentiality and Deficiency Toxicity and Tolerance Speciation Interaction Chapter 6 Elements of Group 1 (Previously Group Ia) Introduction Lithium Rubidium Cesium Chapter 7 Elements of Group 2 (Previously Group IIa) Beryllium Strontium Barium Radium Chapter 8 Elements of Group 3 (Previously Group IIIb) Scandium Yttrium Lanthanides Actinides Chapter 9 Elements of Group 4 (Previously Group IVb) Titanium Zirconium Hafnium Chapter 10 Elements of Group 5 (Previously Group Vb) Vanadium Niobium Tantalum Chapter 11 Elements of Group 6 (Previously Group VIb) Chromium Molybdenum Tungsten Chapter 12 Elements of Group 7 (Previously Group VIIb) Manganese Technetium Rhenium Chapter 13 Elements of Group 8 (Previously Part of Group VIII) Iron Ruthenium Osmium Chapter 14 Elements of Group 9 (Previously Part of Group VIII) Cobalt Rhodium Iridium Chapter 15 Elements of Group 10 (Previously Part of Group VIII) Nickel Palladium Platinum Chapter 16 Elements of Group 11 (Previously Group Ib) Copper Silver Gold Chapter 17 Trace Elements of Group 12 (Previously of Group IIb) Zinc Cadmium Mercury Chapter 18 Elements of Group 13 (Previously Group IIIa) Boron Aluminum Gallium Indium Thallium Chapter 19 Elements of Group I4 (Previously Group IVa) Silicon Germanium Tin Lead Chapter 20 Elements of Group 15 (Previously Group Va) Arsenic Antimony Bismuth Chapter 21 Elements of Group 16 (Previously Group VIa) Selenium Tellurium Polonium Chapter 22 Elements of Group 17 (Previously Group VIIa) Fluorine Chlorine Bromine Iodine

9,739 citations

Book
17 Mar 1994
TL;DR: In this article, an introduction to modern soil chemistry describes chemical processes in soils in terms of established principles of inorganic, organic, and physical chemistry, providing an understanding of the structure of the solid mineral and organic materials from which soils are formed.
Abstract: This introduction to modern soil chemistry describes chemical processes in soils in terms of established principles of inorganic, organic, and physical chemistry. The text provides an understanding of the structure of the solid mineral and organic materials from which soils are formed, and explains such important processes as cation exchange, chemisorption and physical absorption of organic and inorganic ions and molecules, soil acidification and weathering, oxidation-reduction reactions, and development of soil alkalinity and swelling properties. Environmental rather than agricultural topics are emphasized, with individual chapters on such pollutants as heavy metals, trace elements, and inorganic chemicals.

6,735 citations

01 Jan 1984

3,867 citations

Journal ArticleDOI
TL;DR: In this paper, the standard molar Gibbs free energies of hydration, ΔhydG°, of 109 (mainly inorganic) ions ranging in their charges from −3 to +4 have been compiled and interpreted in terms of a model used previously for other thermodynamic quantities.
Abstract: The standard molar Gibbs free energies of hydration, ΔhydG°, of 109 (mainly inorganic) ions ranging in their charges from –3 to +4 have been compiled and interpreted in terms of a model used previously for other thermodynamic quantities of hydration. The main contributions to ΔhydG° are the electrostatic effects, resulting in solvent immobilization, electrostriction, and dielectric saturation in a hydration shell of specified thickness, and further such effects on the water that surrounds this shell. Other effects contribute to ΔhydG° to a minor extent only.

1,574 citations