Abstract: The data structure used to represent image information can be critical to the successful completion of an image processing task. One structure that has attracted considerable attention is the image pyramid This consists of a set of lowpass or bandpass copies of an image, each representing pattern information of a different scale. Here we describe a variety of pyramid methods that we have developed for image data compression, enhancement, analysis and graphics. ©1984 RCA Corporation Final manuscript received November 12, 1984 Reprint Re-29-6-5 that can perform most of the routine visual tasks that humans do effortlessly. It is becoming increasingly clear that the format used to represent image data can be as critical in image processing as the algorithms applied to the data. A digital image is initially encoded as an array of pixel intensities, but this raw format i s not suited to most tasks. Alternatively, an image may be represented by its Fourier transform, with operations applied to the transform coefficients rather than to the original pixel values. This is appropriate for some data compression and image enhancement tasks, but inappropriate for others. The transform representation is particularly unsuited for machine vision and computer graphics, where the spatial location of pattem elements is critical. Recently there has been a great deal of interest in representations that retain spatial localization as well as localization in the spatial—frequency domain. This i s achieved by decomposing the image into a set of spatial frequency bandpass component images. Individual samples of a component image represent image pattern information that is appropriately localized, while the bandpassed image as a whole represents information about a particular fineness of detail or scale. There is evidence that the human visual system uses such a representation, and multiresolution schemes are becoming increasingly popular in machine vision and in image processing in general. The importance of analyzing images at many scales arises from the nature of images themselves. Scenes in the world contain objects of many sizes, and these objects contain features of many sizes. Moreover, objects can be at various distances from the viewer. As a result, any analysis procedure that is applied only at a single scale may miss information at other scales. The solution is to carry out analyses at all scales simultaneously. Convolution is the basic operation of most image analysis systems, and convolution with large weighting functions is a notoriously expensive computation. In a multiresolution system one wishes to perform convolutions with kernels of many sizes, ranging from very small to very large. and the computational problems appear forbidding. Therefore one of the main problems in working with multiresolution representations is to develop fast and efficient techniques. Members of the Advanced Image Processing Research Group have been actively involved in the development of multiresolution techniques for some time. Most of the work revolves around a representation known as a "pyramid," which is versatile, convenient, and efficient to use. We have applied pyramid-based methods to some fundamental problems in image analysis, data compression, and image manipulation.