scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures

TL;DR: In this paper, it was shown that the macroscopic nonlinear pyroelectric polarization of wurtzite AlInN/GaN, InxGa1-xN and AlxIn1xN ternary compounds (large spontaneous polarization and piezoelectric coupling) dramatically affects the optical and electrical properties of multilayered Al(In)GaN/GAN hetero-, nanostructures and devices, due to the huge built-in electrostatic fields and bound interface charges caused by gradients in polarization at surfaces and heter
Abstract: The macroscopic nonlinear pyroelectric polarization of wurtzite AlxGa1-xN, InxGa1-xN and AlxIn1-xN ternary compounds (large spontaneous polarization and piezoelectric coupling) dramatically affects the optical and electrical properties of multilayered Al(In)GaN/GaN hetero-, nanostructures and devices, due to the huge built-in electrostatic fields and bound interface charges caused by gradients in polarization at surfaces and heterointerfaces. Models of polarization-induced effects in GaN-based devices so far have assumed that polarization in ternary nitride alloys can be calculated by a linear interpolation between the limiting values of the binary compounds. We present theoretical and experimental evidence that the macroscopic polarization in nitride alloys is a nonlinear function of strain and composition. We have applied these results to interpret experimental data obtained in a number of InGaN/GaN quantum wells?(QWs) as well as AlInN/GaN and AlGaN/GaN transistor structures. We find that the discrepancies between experiment and ab initio theory present so far are almost completely eliminated for the AlGaN/GaN-based heterostructures when the nonlinearity of polarization is accounted for. The realization of undoped lattice-matched AlInN/GaN heterostructures further allows us to prove the existence of a gradient in spontaneous polarization by the experimental observation of two-dimensional electron gases?(2DEGs). The confinement of 2DEGs in InGaN/GaN QWs in combination with the measured Stark shift of excitonic recombination is used to determine the polarization-induced electric fields in nanostructures. To facilitate inclusion of the predicted nonlinear polarization in future simulations, we give an explicit prescription to calculate polarization-induced electric fields and bound interface charges for arbitrary composition in each of the ternary III-N alloys. In addition, the theoretical and experimental results presented here allow a detailed comparison of the predicted electric fields and bound interface charges with the measured Stark shift and the sheet carrier concentration of polarization-induced 2DEGs. This comparison provides an insight into the reliability of the calculated nonlinear piezoelectric and spontaneous polarization of group III nitride ternary alloys.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III-V semiconductors that have been investigated to date is presented.
Abstract: We present a comprehensive and up-to-date compilation of band parameters for all of the nitrogen-containing III–V semiconductors that have been investigated to date. The two main classes are: (1) “conventional” nitrides (wurtzite and zinc-blende GaN, InN, and AlN, along with their alloys) and (2) “dilute” nitrides (zinc-blende ternaries and quaternaries in which a relatively small fraction of N is added to a host III–V material, e.g., GaAsN and GaInAsN). As in our more general review of III–V semiconductor band parameters [I. Vurgaftman et al., J. Appl. Phys. 89, 5815 (2001)], complete and consistent parameter sets are recommended on the basis of a thorough and critical review of the existing literature. We tabulate the direct and indirect energy gaps, spin-orbit and crystal-field splittings, alloy bowing parameters, electron and hole effective masses, deformation potentials, elastic constants, piezoelectric and spontaneous polarization coefficients, as well as heterostructure band offsets. Temperature an...

2,525 citations

Journal ArticleDOI
TL;DR: In this article, the basic operation principle for MEMS with wide band gap semiconductors is described, and the first applications of SiC based MEMS are demonstrated, and innovative MEMS and NEMS devices are reviewed.
Abstract: With the increasing requirements for microelectromechanical systems (MEMS) regarding stability, miniaturization and integration, novel materials such as wide band gap semiconductors are attracting more attention. Polycrystalline SiC has first been implemented into Si micromachining techniques, mainly as etch stop and protective layers. However, the outstanding properties of wide band gap semiconductors offer many more possibilities for the implementation of new functionalities. Now, a variety of technologies for SiC and group III nitrides exist to fabricate fully wide band gap semiconductor based MEMS. In this paper we first review the basic technology (deposition and etching) for group III nitrides and SiC with a special focus on the fabrication of three-dimensional microstructures relevant for MEMS. The basic operation principle for MEMS with wide band gap semiconductors is described. Finally, the first applications of SiC based MEMS are demonstrated, and innovative MEMS and NEMS devices are reviewed.

352 citations

Journal ArticleDOI
TL;DR: In this paper, the structural and optical properties of lattice-matching AlInN layers to GaN have been investigated and their specific use to realize nearly strain-free structures for photonic and electronic applications has been discussed.
Abstract: We report on the current properties of Al1-x InxN (x approximate to 0.18) layers lattice- matched ( LM) to GaN and their specific use to realize nearly strain- free structures for photonic and electronic applications. Following a literature survey of the general properties of AlInN layers, structural and optical properties of thin state- of- the- art AlInN layers LM to GaN are described showing that despite improved structural properties these layers are still characterized by a typical background donor concentration of ( 1 - 5) x 10(18) cm(-3) and a large Stokes shift (similar to 800 meV) between luminescence and absorption edge. The use of these AlInN layers LM to GaN is then exemplified through the properties of GaN/ AlInN multiple quantum wells ( QWs) suitable for near- infrared intersubband applications. A built- in electric field of 3.64MVcm(-1) solely due to spontaneous polarization is deduced from photoluminescence measurements carried out on strain- free single QW heterostructures, a value in good agreement with that deduced from theoretical calculation. Other potentialities regarding optoelectronics are demonstrated through the successful realization of crack- free highly reflective AlInN/ GaN distributed Bragg reflectors ( R > 99%) and high quality factor microcavities ( Q > 2800) likely to be of high interest for short wavelength vertical light emitting devices and fundamental studies on the strong coupling regime between excitons and cavity photons. In this respect, room temperature ( RT) lasing of a LM AlInN/ GaN vertical cavity surface emitting laser under optical pumping is reported. A description of the selective lateral oxidation of AlInN layers for current confinement in nitride- based light emitting devices and the selective chemical etching of oxidized AlInN layers is also given. Finally, the characterization of LM AlInN/ GaN heterojunctions will reveal the potential of such a system for the fabrication of high electron mobility transistors through the report of a high two- dimensional electron gas sheet carrier density ( n(s) similar to 2.6 x 10(13) cm(-2)) combined with a RT mobility mu(e) similar to 1170 cm(2) V-1 s(-1) and a low sheet resistance, R similar to 210 Omega square.

313 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed that the key carrier transport process is emission of electrons from a trap state near the metal-semiconductor interface into a continuum of states associated with each conductive dislocation.
Abstract: Temperature-dependent current-voltage measurements combined with conductive atomic force microscopy and analytical modeling have been used to assess possible mechanisms of reverse-bias leakage current flow in Schottky diodes fabricated from GaN and Al0.25Ga0.75N∕GaN structures grown by molecular-beam epitaxy. Below 150K, leakage current is nearly independent of temperature, indicating that conduction is dominated by tunneling transport. At higher temperatures, leakage current in both GaN and Al0.25Ga0.75N∕GaN diode structures is well described by a Frenkel-Poole emission model. Based on the inferred emission barrier heights and the observation that room-temperature leakage current is dominated by the presence of highly conductive dislocations, it is suggested that the key carrier transport process is emission of electrons from a trap state near the metal-semiconductor interface into a continuum of states associated with each conductive dislocation. In this model for leakage current flow, the emission barr...

312 citations

Journal ArticleDOI
TL;DR: In this article, a staggered InGaN quantum well with step-function-like In content in the quantum well offers significantly improved radiative recombination rate and optical gain in comparison to the conventional type-I In-GaN QW.
Abstract: Staggered InGaN quantum wells (QWs) grown by metal-organic chemical vapor deposition are demonstrated as improved active region for visible light emitters. Theoretical studies indicate that InGaN QW with step-function-like In content in the quantum well offers significantly improved radiative recombination rate and optical gain in comparison to the conventional type-I InGaN QW. Experimental results of light emitting diode (LED) structure utilizing staggered InGaN QW show good agreement with theory. Polarization band engineering via staggered InGaN quantum well allows enhancement of radiative recombination rate, leading to the improvement of photoluminescence intensity and LED output power.

305 citations

References
More filters
Journal ArticleDOI
TL;DR: A detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set is presented in this article. But this is not a comparison of our algorithm with the one presented in this paper.

47,666 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an ab initio quantum-mechanical molecular-dynamics calculations based on the calculation of the electronic ground state and of the Hellmann-Feynman forces in the local density approximation.
Abstract: We present ab initio quantum-mechanical molecular-dynamics calculations based on the calculation of the electronic ground state and of the Hellmann-Feynman forces in the local-density approximation at each molecular-dynamics step. This is possible using conjugate-gradient techniques for energy minimization, and predicting the wave functions for new ionic positions using subspace alignment. This approach avoids the instabilities inherent in quantum-mechanical molecular-dynamics calculations for metals based on the use of a fictitious Newtonian dynamics for the electronic degrees of freedom. This method gives perfect control of the adiabaticity and allows us to perform simulations over several picoseconds.

32,798 citations

Book
01 Jan 1985
TL;DR: In this paper, the physical properties of crystals systematically in tensor notation are presented, presenting tensor properties in terms of their common mathematical basis and the thermodynamic relations between them.
Abstract: First published in 1957, this classic study has been reissued in a paperback version that includes an additional chapter bringing the material up to date. The author formulates the physical properties of crystals systematically in tensor notation, presenting tensor properties in terms of their common mathematical basis and the thermodynamic relations between them. The mathematical groundwork is laid in a discussion of tensors of the first and second ranks. Tensors of higher ranks and matrix methods are then introduced as natural developments of the theory. A similar pattern is followed in discussing thermodynamic and optical aspects.

8,520 citations

Book
21 Mar 1997
TL;DR: The physics of gallium nitrides and related compounds GaN growth p-Type GaN obtained by electron beam irradiation n-Type GAN p-type GaN InGaN Zn and Si co-doped GaN double-heterostructure blue and blue green LEDs inGaN single-quantum-well structure LEDs room-temperature pulsed operation of laser diodes emission mechanisms of LEDs and LDs room temperature CW operation of InGAN MQW LDs latest results as discussed by the authors.
Abstract: Physics of gallium nitrides and related compounds GaN growth p-Type GaN obtained by electron beam irradiation n-Type GaN p-Type GaN InGaN Zn and Si co-doped InGaN/AlGaN double-heterostructure blue and blue-green LEDs inGaN single-quantum-well structure LEDs room-temperature pulsed operation of laser diodes emission mechanisms of LEDs and LDs room temperature CW operation of InGaN MQW LDs latest results - lasers with self-organized InGaN quantum dots

3,805 citations

Journal ArticleDOI
TL;DR: It is shown that physically $\ensuremath{\Delta}P can be interpreted as a displacement of the center of charge of the Wannier functions.
Abstract: We consider the change in polarization \ensuremath{\Delta}P which occurs upon making an adiabatic change in the Kohn-Sham Hamiltonian of the solid. A simple expression for \ensuremath{\Delta}P is derived in terms of the valence-band wave functions of the initial and final Hamiltonians. We show that physically \ensuremath{\Delta}P can be interpreted as a displacement of the center of charge of the Wannier functions. The formulation is successfully applied to compute the piezoelectric tensor of GaAs in a first-principles pseudopotential calculation.

3,136 citations