scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

01 Jan 2014-Waste Management (Pergamon)-Vol. 34, Iss: 1, pp 210-218
TL;DR: In this paper, the main products (liquid bio-oil, solid bio-char and syngas) were obtained from pyrolysis of animal fatty wastes, and the maximum production of biooil was achieved at a pyroleysis temperature of 500 °C and a heating rate of 5 °C/min.
About: This article is published in Waste Management.The article was published on 2014-01-01. It has received 152 citations till now. The article focuses on the topics: Pyrolysis & Synthetic fuel.
Citations
More filters
Journal ArticleDOI
TL;DR: The properties of hydrocarbon fuel were superior to biodiesel and 0# diesel due to higher calorific value, better low-temperature low fluidity, and lower density and viscosity.

43 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss changes in physical and chemical properties of biocrude using fractional distillation and discuss the potential role of distillation in preparing fuel suitable for diesel engines.
Abstract: Hydrothermal liquefaction (HTL) is an efficient thermochemical method for biomass conversion into biocrude which could be operated with a wide range of feedstock resources. However, HTL biocrude characteristics including viscosity, density, heating value, composition and stability are not comparable with conventional products. The current focus for upgrading mainly relates to catalytic and hydrogenation processes; however, physical processes are cheaper and more reliable. Fractional distillation has potential as a cost-efficient physical technique for biocrude upgrading or even co-processing with crude oil in a refinery. This review summarises and discusses changes in physical and chemical properties of biocrude using fractional distillation. Distillation reduces the oxygen content of biocrude for heavy fractions more than 53% on average. It also decreases the sulphur and nitrogen content of biocrude up to 5–44%. The potential role of distillation in preparing fuel suitable for diesel engines is investigated. The challenges and technical limitations in HTL biocrude application in industry are also discussed alongside with possible solutions and future research potential which addresses these challenges.

43 citations

Journal ArticleDOI
TL;DR: In this article, the authors performed deoxygenation through decarboxylation of Jatropha curcas (non-edible) oil under a nitrogen atmosphere using alumina and hydrotalcite as catalysts at 350 and 400°C.

38 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of the temperature within the range of 300-600°C is detected in solid, liquid and gas products in a fixed-bed bio-oil production process.

37 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the technology readiness level (TRL) assessment technique to examine the development of thermochemical conversion processes in recent decades, especially focusing on pyrolysis.
Abstract: Fuels produced from triglyceride biomass have been extensively studied in recent decades. However, despite these efforts, there is still a gap between the bench scale and higher production rates that would help these renewable fuels to become a commercial reality. In this study, the technology readiness level (TRL) assessment technique was employed to examine the development of thermochemical conversion processes in recent decades, especially focusing on pyrolysis. The assessment included most of the relevant articles and patents published, dividing them into the levels of the scale. This assessment provides insights into the challenges that still need to be addressed. Further technological developments in specific areas and the actions of policy-makers were found to be crucial to enable the commercial use of biofuels from triglyceride biomass in the near future.

36 citations

References
More filters
Journal ArticleDOI
TL;DR: A review of the recent developments in the wood pyrolysis and reports the characteristics of the resulting bio-oils, which are the main products of fast wood pyrotechnics, can be found in this paper.
Abstract: Fast pyrolysis utilizes biomass to produce a product that is used both as an energy source and a feedstock for chemical production. Considerable efforts have been made to convert wood biomass to liquid fuels and chemicals since the oil crisis in mid-1970s. This review focuses on the recent developments in the wood pyrolysis and reports the characteristics of the resulting bio-oils, which are the main products of fast wood pyrolysis. Virtually any form of biomass can be considered for fast pyrolysis. Most work has been performed on wood, because of its consistency and comparability between tests. However, nearly 100 types of biomass have been tested, ranging from agricultural wastes such as straw, olive pits, and nut shells to energy crops such as miscanthus and sorghum. Forestry wastes such as bark and thinnings and other solid wastes, including sewage sludge and leather wastes, have also been studied. In this review, the main (although not exclusive) emphasis has been given to wood. The literature on woo...

4,988 citations


"Pyrolysis of waste animal fats in a..." refers background in this paper

  • ...For bio-oils from lignocellulosic biomass, the molecular composition is quite different since typical chemical substances related to the original polymers – cellulose, hemicellulose, and lignin – can be found (such as phenolic compounds: phenols, guaiacols, syringols and furans) besides the fatty acids, alkanes, alkenes, amides, aldehydes (Mohan et al., 2006)....

    [...]

Journal ArticleDOI
TL;DR: Biodiesel (fatty acid methyl esters), which is derived from triglycerides by transesterification with methanol, has attracted considerable attention during the past decade as a renewable, biodegradable, and nontoxic fuel.

2,185 citations


"Pyrolysis of waste animal fats in a..." refers background in this paper

  • ...Main research developed in the area of bio-fuels from fatty materials concerns bio-diesel production through transesterification process (Srivastava and Prasad, 2000; Fukuda et al., 2001; Demirbas, 2003; Tashtoush et al., 2004; Phan and Phan, 2008; Sabudak and Yildiz, 2010)....

    [...]

Journal ArticleDOI
TL;DR: In this article, a review of thermal conversion processes and particularly the reactors that have been developed to provide the necessary conditions to optimise performance is presented, and the main technical and non-technical barriers to implementation are identified.

1,760 citations


"Pyrolysis of waste animal fats in a..." refers background or methods in this paper

  • ...(Zanzi et al., 1996; Bridgwater, 2003)....

    [...]

  • ...Pyrolysis is a thermal decomposition of organic substances under oxygen-deficient circumstances into various phases: liquid products (condensable vapors at cooling temperature); carbon-rich solid residues (bio-char); gaseous products (syngas which were not condensable gases) (Maschio et al., 1992; Bridgwater, 2003)....

    [...]

  • ...Thermochemical processes include gasification, pyrolysis and combustion (Bridgwater, 2003; Goyal et al., 2008)....

    [...]

  • ...%) for pyrolytic oils from different biomass resources (Bridgwater, 2003; Onay and Kochar, 2003; Demirbas, 2007; Ndiaye, 2008)....

    [...]

  • ...The liquid product (bio-oil or pyrolytic oil), which is a complex mixture of oxygenated hydrocarbons and water, can be used directly as a liquid fuel or as source of synthetic chemical feedstocks (Bridgwater, 2003; Blin et al., 2007; Maher and Bressler, 2007)....

    [...]

Journal ArticleDOI
TL;DR: The main advantages of using biodiesel are its renewability, better-quality exhaust gas emissions, its biodegradability and given that all the organic carbon present is photosynthetic in origin, it does not contribute to a rise in the level of carbon dioxide in the atmosphere and consequently to the greenhouse effect as mentioned in this paper.
Abstract: Efforts are under way in many countries, including India, to search for suitable alternative diesel fuels that are environment friendly. The need to search for these fuels arises mainly from the standpoint of preserving the global environment and the concern about long-term supplies of conventional hydrocarbon-based diesel fuels. Among the different possible sources, diesel fuels derived from triglycerides (vegetable oils/animal fats) present a promising alternative to substitute diesel fuels. Although triglycerides can fuel diesel engines, their high viscosities, low volatilities and poor cold flow properties have led to the investigation of various derivatives. Fatty acid methyl esters, known as biodiesel, derived from triglycerides by transesterification with methanol have received the most attention. The main advantages of using biodiesel are its renewability, better-quality exhaust gas emissions, its biodegradability and given that all the organic carbon present is photosynthetic in origin, it does not contribute to a rise in the level of carbon dioxide in the atmosphere and consequently to the greenhouse effect.

1,733 citations


"Pyrolysis of waste animal fats in a..." refers background in this paper

  • ...Main research developed in the area of bio-fuels from fatty materials concerns bio-diesel production through transesterification process (Srivastava and Prasad, 2000; Fukuda et al., 2001; Demirbas, 2003; Tashtoush et al., 2004; Phan and Phan, 2008; Sabudak and Yildiz, 2010)....

    [...]

  • ...In comparison to GC–MS compositions of bio-oils produced from triglycerides materials pyrolysis, great similarities in the detected compounds can be found (Srivastava and Prasad, 2000; Lima et al., 2004)....

    [...]

Journal ArticleDOI
TL;DR: Fast pyrolysis for production of liquids has developed considerably since the first experiments in the late 1970s as mentioned in this paper, leading to significant advances in process development and a wide range of reactor configurations that have been developed to meet the stringent requirements for high yields of useful liquids, for use as a fuel in boilers, engines and turbines and as a source of chemical commodities.
Abstract: Fast pyrolysis for production of liquids has developed considerably since the first experiments in the late 1970s. Many reactors and processes have been investigated and developed to the point where fast pyrolysis is now an accepted feasible and viable route to renewable liquid fuels, chemicals and derived products. It is also now clear that liquid products offer significant advantages in storage and transport over gas and heat. These advantages have caused greater attention to be paid to fast pyrolysis, leading to significant advances in process development. The technology of fast pyrolysis for liquids is noteworthy for the wide range of reactor configurations that have been developed to meet the stringent requirements for high yields of useful liquids, for use as a fuel in boilers, engines and turbines and as a source of chemical commodities. This review summarizes the key features of fast pyrolysis and the resultant liquid product and describes the major reaction systems and processes that have been developed over the last 20 years.

1,686 citations