scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review

10 Mar 2006-Energy & Fuels (American Chemical Society)-Vol. 20, Iss: 3, pp 848-889
TL;DR: A review of the recent developments in the wood pyrolysis and reports the characteristics of the resulting bio-oils, which are the main products of fast wood pyrotechnics, can be found in this paper.
Abstract: Fast pyrolysis utilizes biomass to produce a product that is used both as an energy source and a feedstock for chemical production. Considerable efforts have been made to convert wood biomass to liquid fuels and chemicals since the oil crisis in mid-1970s. This review focuses on the recent developments in the wood pyrolysis and reports the characteristics of the resulting bio-oils, which are the main products of fast wood pyrolysis. Virtually any form of biomass can be considered for fast pyrolysis. Most work has been performed on wood, because of its consistency and comparability between tests. However, nearly 100 types of biomass have been tested, ranging from agricultural wastes such as straw, olive pits, and nut shells to energy crops such as miscanthus and sorghum. Forestry wastes such as bark and thinnings and other solid wastes, including sewage sludge and leather wastes, have also been studied. In this review, the main (although not exclusive) emphasis has been given to wood. The literature on woo...
Citations
More filters
Journal ArticleDOI
TL;DR: Hydrogen Production by Water−Gas Shift Reaction 4056 4.1.
Abstract: 1.0. Introduction 4044 2.0. Biomass Chemistry and Growth Rates 4047 2.1. Lignocellulose and Starch-Based Plants 4047 2.2. Triglyceride-Producing Plants 4049 2.3. Algae 4050 2.4. Terpenes and Rubber-Producing Plants 4052 3.0. Biomass Gasification 4052 3.1. Gasification Chemistry 4052 3.2. Gasification Reactors 4054 3.3. Supercritical Gasification 4054 3.4. Solar Gasification 4055 3.5. Gas Conditioning 4055 4.0. Syn-Gas Utilization 4056 4.1. Hydrogen Production by Water−Gas Shift Reaction 4056

7,067 citations

Journal ArticleDOI
TL;DR: In this paper, an updated review on fast pyrolysis of biomass for production of a liquid usually referred to as bio-oil is provided, including the major reaction systems.
Abstract: This paper provides an updated review on fast pyrolysis of biomass for production of a liquid usually referred to as bio-oil. The technology of fast pyrolysis is described including the major reaction systems. The primary liquid product is characterised by reference to the many properties that impact on its use. These properties have caused increasingly extensive research to be undertaken to address properties that need modification and this area is reviewed in terms of physical, catalytic and chemical upgrading. Of particular note is the increasing diversity of methods and catalysts and particularly the complexity and sophistication of multi-functional catalyst systems. It is also important to see more companies involved in this technology area and increased take-up of evolving upgrading processes. © 2011 Elsevier Ltd.

3,727 citations

Journal ArticleDOI
TL;DR: Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy.
Abstract: Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy. As of 2005, over 3% of the total energy consumption in the United States was supplied by biomass, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy. Similarly, the European Union received 66.1% of its renewable energy from biomass, which thus surpassed the total combined contribution from hydropower, wind power, geothermal energy, and solar power. In addition to energy, the production of chemicals from biomass is also essential; indeed, the only renewable source of liquid transportation fuels is currently obtained from biomass.

3,644 citations

Journal ArticleDOI
TL;DR: Strong acids and bases seem to be the best desorbing agents to produce arsenic concentrates, and some commercial adsorbents which include resins, gels, silica, treated silica tested for arsenic removal come out to be superior.

3,168 citations

Journal ArticleDOI
TL;DR: Due to complexity of soil-water system in nature, the effectiveness of biochars on remediation of various organic/inorganic contaminants is still uncertain.

3,163 citations


Cites background or methods from "Pyrolysis of Wood/Biomass for Bio-o..."

  • ...Pyrolysis is generally divided into fast, intermediate, and slow depending on the residence time and temperature (Table 1; Mohan et al., 2006)....

    [...]

  • ...However, bioenergy production is dependent on the pyrolysis conditions, in which the slow pyrolysis results in a lower yield of liquid fuel and more biochar, whereas the fast pyrolysis generates more liquid fuel (bio-oil) with relatively less biochar (Mohan et al., 2006)....

    [...]

  • ...Fast pyrolysis with a very short residence time (<2 s) is often used to produce bio-oil from biomass yielding about 75% bio-oil (Mohan et al., 2006)....

    [...]

  • ...The resulting gas mixture is known as synthetic gas or syngas (Mohan et al., 2006)....

    [...]

  • ...Slow and intermediate pyrolysis processes with a residence time of few minutes to several hours or even days are generally favored for biochar 2009), Mohan et al. (2006), and Sohi et al. (2009)]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, pyrolysis process of beech wood was carried out in a horizontal cylindrical reactor of stainless-steel, 127.0mm height, 17.0-mm inner diameter and 25.0 -mm outer diameter inserted vertically into an electrically heated tubular furnace in the absence of oxygen.

105 citations

Journal ArticleDOI
TL;DR: In this paper, a model of wood pyrolysis in a fluidized bed reactor has been developed and the effect of main operation parameters on wood pyrotechnic product distribution was well simulated.

102 citations

Journal ArticleDOI
TL;DR: The pyrolysis of switchgrass (Panicum virgatum) at three stages of physiological maturity was studied in a PY-GC/MS system at the 600-1050°C temperature range as discussed by the authors.

100 citations

Journal ArticleDOI
TL;DR: In this article, an ablative pyrolysis reactor was designed, constructed and operated at temperatures from 450° to 600°C and at dry reacted wood feedrates up to 2.5 kg/h.
Abstract: Ablative pyrolysis is one of a range of fast or flash pyrolysis technologies for the production of liquids in high yields which offers the potential for high reactor specific throughputs with reduced equipment size, costs and improved controllability. The main objectives of the work are to design, construct and operate an ablative pyrolysis reactor and a pyrolysis liquids collection system which includes identification of key process parameters, exploration of relationships between parameters and product quality and the development of a new model to account for the ablative pyrolysis process. A reactor has been operated at temperatures from 450° to 600°C and at dry reacted wood feedrates up to 2.5 kg/h. Run times of 45 min have been achieved at steady state. Total liquid yields up to 81 wt% on dry ablatively pyrolysed wood basis have been achieved.

100 citations

Journal ArticleDOI
TL;DR: In this article, bark-free chips of Turkish red pine (Pinus Brutia Ten) were pyrolyzed in a laboratory-scale fixed bed reactor, and the influence of final pyrolization temperature, heating rate, and pyrolyses was analyzed.
Abstract: In this work, bark-free chips of Turkish red pine ( Pinus Brutia Ten.) were pyrolyzed in a laboratory-scale fixed bed reactor. The influence of final pyrolysis temperature, heating rate, and pyroly...

100 citations