scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review

10 Mar 2006-Energy & Fuels (American Chemical Society)-Vol. 20, Iss: 3, pp 848-889
TL;DR: A review of the recent developments in the wood pyrolysis and reports the characteristics of the resulting bio-oils, which are the main products of fast wood pyrotechnics, can be found in this paper.
Abstract: Fast pyrolysis utilizes biomass to produce a product that is used both as an energy source and a feedstock for chemical production. Considerable efforts have been made to convert wood biomass to liquid fuels and chemicals since the oil crisis in mid-1970s. This review focuses on the recent developments in the wood pyrolysis and reports the characteristics of the resulting bio-oils, which are the main products of fast wood pyrolysis. Virtually any form of biomass can be considered for fast pyrolysis. Most work has been performed on wood, because of its consistency and comparability between tests. However, nearly 100 types of biomass have been tested, ranging from agricultural wastes such as straw, olive pits, and nut shells to energy crops such as miscanthus and sorghum. Forestry wastes such as bark and thinnings and other solid wastes, including sewage sludge and leather wastes, have also been studied. In this review, the main (although not exclusive) emphasis has been given to wood. The literature on woo...
Citations
More filters
Journal ArticleDOI
TL;DR: Hydrogen Production by Water−Gas Shift Reaction 4056 4.1.
Abstract: 1.0. Introduction 4044 2.0. Biomass Chemistry and Growth Rates 4047 2.1. Lignocellulose and Starch-Based Plants 4047 2.2. Triglyceride-Producing Plants 4049 2.3. Algae 4050 2.4. Terpenes and Rubber-Producing Plants 4052 3.0. Biomass Gasification 4052 3.1. Gasification Chemistry 4052 3.2. Gasification Reactors 4054 3.3. Supercritical Gasification 4054 3.4. Solar Gasification 4055 3.5. Gas Conditioning 4055 4.0. Syn-Gas Utilization 4056 4.1. Hydrogen Production by Water−Gas Shift Reaction 4056

7,067 citations

Journal ArticleDOI
TL;DR: In this paper, an updated review on fast pyrolysis of biomass for production of a liquid usually referred to as bio-oil is provided, including the major reaction systems.
Abstract: This paper provides an updated review on fast pyrolysis of biomass for production of a liquid usually referred to as bio-oil. The technology of fast pyrolysis is described including the major reaction systems. The primary liquid product is characterised by reference to the many properties that impact on its use. These properties have caused increasingly extensive research to be undertaken to address properties that need modification and this area is reviewed in terms of physical, catalytic and chemical upgrading. Of particular note is the increasing diversity of methods and catalysts and particularly the complexity and sophistication of multi-functional catalyst systems. It is also important to see more companies involved in this technology area and increased take-up of evolving upgrading processes. © 2011 Elsevier Ltd.

3,727 citations

Journal ArticleDOI
TL;DR: Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy.
Abstract: Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy. As of 2005, over 3% of the total energy consumption in the United States was supplied by biomass, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy. Similarly, the European Union received 66.1% of its renewable energy from biomass, which thus surpassed the total combined contribution from hydropower, wind power, geothermal energy, and solar power. In addition to energy, the production of chemicals from biomass is also essential; indeed, the only renewable source of liquid transportation fuels is currently obtained from biomass.

3,644 citations

Journal ArticleDOI
TL;DR: Strong acids and bases seem to be the best desorbing agents to produce arsenic concentrates, and some commercial adsorbents which include resins, gels, silica, treated silica tested for arsenic removal come out to be superior.

3,168 citations

Journal ArticleDOI
TL;DR: Due to complexity of soil-water system in nature, the effectiveness of biochars on remediation of various organic/inorganic contaminants is still uncertain.

3,163 citations


Cites background or methods from "Pyrolysis of Wood/Biomass for Bio-o..."

  • ...Pyrolysis is generally divided into fast, intermediate, and slow depending on the residence time and temperature (Table 1; Mohan et al., 2006)....

    [...]

  • ...However, bioenergy production is dependent on the pyrolysis conditions, in which the slow pyrolysis results in a lower yield of liquid fuel and more biochar, whereas the fast pyrolysis generates more liquid fuel (bio-oil) with relatively less biochar (Mohan et al., 2006)....

    [...]

  • ...Fast pyrolysis with a very short residence time (<2 s) is often used to produce bio-oil from biomass yielding about 75% bio-oil (Mohan et al., 2006)....

    [...]

  • ...The resulting gas mixture is known as synthetic gas or syngas (Mohan et al., 2006)....

    [...]

  • ...Slow and intermediate pyrolysis processes with a residence time of few minutes to several hours or even days are generally favored for biochar 2009), Mohan et al. (2006), and Sohi et al. (2009)]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, fixed beds of beechwood particles 10mm in size were pyrolyzed under conventional pyrolynsis conditions, and the results are compared with the findings made in various studies of this topic.

62 citations

Journal ArticleDOI
TL;DR: In this article, the extent of cellulose pyrolysis in a Laminar Entrained Flow Reactor (LEFR) was investigated by sampling the gas phase products with a molecular beam mass spectrometer system and independently by sampling and weighing residues on a filter paper.
Abstract: Cellulose pyrolysis has been studied in a laminar entrained flow reactor (LEFR). As described in the previous companion paper, the reactor is capable of high heating rates (∼104 K/s) and has been characterized in detail to ensure that pyrolysis of lignocellulosic materials occurs under kinetic control at the conditions of the reactor. The extent of cellulose pyrolysis in the LEFR was monitored by sampling the gas phase products with a molecular beam mass spectrometer system, and independently by sampling and weighing residues on a filter paper. Varying the reactor furnace temperature controls the pyrolysis severity. Quantitative cellulose pyrolysis data have been compared to several published reaction rates. Published models that involve low activation energy rates from other high temperature experiments described in the literature best approximate the results obtained in this study. Factor analysis of the mass spectral data requires two principal components to interpret the gas phase product composition....

61 citations

Journal ArticleDOI
TL;DR: In this paper, flash pyrolysis products from tobacco stalk and yellow pine wood obtained in a pyrotechnical apparatus were analyzed and the results indicated the origin of each product.
Abstract: Flash pyrolysis products from tobacco stalk and yellow pine wood obtained in a pyrolysis apparatus were analyzed. Comparison of pyrolytic products' structural components indicates the origin of each product. Methanol mainly arises from methoxyl groups of uronic acid and from the breakdown of methyl esters and/or ethers from decomposition of pectin-like plant materials. Acetic acid comes from the elimination of acetyl groups originally linked to the xylose unit. The yields of char products from the tobacco stalk and yellow pine wood samples decreased from 33.9% to 23.0% and from 29.2% to 17.0% when final pyrolysis temperature was increased from 675 to 1025 K, respectively. The yields of gaseous products from the tobacco stalk and yellow pine wood samples increased from 25.0% to 40.2% and from 29.7% to 42.5% when final pyrolysis temperature was increased from 675 to 1025 K, respectively. The yields of liquid products from both samples increased with increasing temperature from 675 to 875 K and then decrease...

61 citations

Journal ArticleDOI
01 Jul 1991-Fuel
TL;DR: In this article, a reaction scheme consisting of three independent parallel reactions was used to describe the primary reactions of fir wood pyrolysis in a fluidized bed reactor, in the temperature range 400-500 °C.

58 citations

Journal ArticleDOI
TL;DR: In this article, a range of physical and chemical properties of pyrolysis liquids is described, including density, viscosity, refractive index, thermal capacity, thermal conductivity, and their variation with temperature, time, exposure to air/oxygen and history.
Abstract: Process design requires knowledge of the physical and chemical properties of the fluids being handled The measurement of a range of properties of two pyrolysis liquids is described The pyrolysis liquid properties reported are: density, viscosity, refractive index, thermal capacity, thermal conductivity, and their variation with temperature, time, exposure to air/oxygen and history The oils follow conventional behaviour for most properties except that there is marked differences in viscosity behaviour above around 50°C compared to below 50°C There is a noticeable effect from exposure to oxygen/air which increases viscosity This may be due to removal of volatiles, removal of water or reaction There is clear evidence that some reaction occurs even under ambient conditions

58 citations