scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review

10 Mar 2006-Energy & Fuels (American Chemical Society)-Vol. 20, Iss: 3, pp 848-889
TL;DR: A review of the recent developments in the wood pyrolysis and reports the characteristics of the resulting bio-oils, which are the main products of fast wood pyrotechnics, can be found in this paper.
Abstract: Fast pyrolysis utilizes biomass to produce a product that is used both as an energy source and a feedstock for chemical production. Considerable efforts have been made to convert wood biomass to liquid fuels and chemicals since the oil crisis in mid-1970s. This review focuses on the recent developments in the wood pyrolysis and reports the characteristics of the resulting bio-oils, which are the main products of fast wood pyrolysis. Virtually any form of biomass can be considered for fast pyrolysis. Most work has been performed on wood, because of its consistency and comparability between tests. However, nearly 100 types of biomass have been tested, ranging from agricultural wastes such as straw, olive pits, and nut shells to energy crops such as miscanthus and sorghum. Forestry wastes such as bark and thinnings and other solid wastes, including sewage sludge and leather wastes, have also been studied. In this review, the main (although not exclusive) emphasis has been given to wood. The literature on woo...
Citations
More filters
Journal ArticleDOI
TL;DR: Hydrogen Production by Water−Gas Shift Reaction 4056 4.1.
Abstract: 1.0. Introduction 4044 2.0. Biomass Chemistry and Growth Rates 4047 2.1. Lignocellulose and Starch-Based Plants 4047 2.2. Triglyceride-Producing Plants 4049 2.3. Algae 4050 2.4. Terpenes and Rubber-Producing Plants 4052 3.0. Biomass Gasification 4052 3.1. Gasification Chemistry 4052 3.2. Gasification Reactors 4054 3.3. Supercritical Gasification 4054 3.4. Solar Gasification 4055 3.5. Gas Conditioning 4055 4.0. Syn-Gas Utilization 4056 4.1. Hydrogen Production by Water−Gas Shift Reaction 4056

7,067 citations

Journal ArticleDOI
TL;DR: In this paper, an updated review on fast pyrolysis of biomass for production of a liquid usually referred to as bio-oil is provided, including the major reaction systems.
Abstract: This paper provides an updated review on fast pyrolysis of biomass for production of a liquid usually referred to as bio-oil. The technology of fast pyrolysis is described including the major reaction systems. The primary liquid product is characterised by reference to the many properties that impact on its use. These properties have caused increasingly extensive research to be undertaken to address properties that need modification and this area is reviewed in terms of physical, catalytic and chemical upgrading. Of particular note is the increasing diversity of methods and catalysts and particularly the complexity and sophistication of multi-functional catalyst systems. It is also important to see more companies involved in this technology area and increased take-up of evolving upgrading processes. © 2011 Elsevier Ltd.

3,727 citations

Journal ArticleDOI
TL;DR: Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy.
Abstract: Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy. As of 2005, over 3% of the total energy consumption in the United States was supplied by biomass, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy. Similarly, the European Union received 66.1% of its renewable energy from biomass, which thus surpassed the total combined contribution from hydropower, wind power, geothermal energy, and solar power. In addition to energy, the production of chemicals from biomass is also essential; indeed, the only renewable source of liquid transportation fuels is currently obtained from biomass.

3,644 citations

Journal ArticleDOI
TL;DR: Strong acids and bases seem to be the best desorbing agents to produce arsenic concentrates, and some commercial adsorbents which include resins, gels, silica, treated silica tested for arsenic removal come out to be superior.

3,168 citations

Journal ArticleDOI
TL;DR: Due to complexity of soil-water system in nature, the effectiveness of biochars on remediation of various organic/inorganic contaminants is still uncertain.

3,163 citations


Cites background or methods from "Pyrolysis of Wood/Biomass for Bio-o..."

  • ...Pyrolysis is generally divided into fast, intermediate, and slow depending on the residence time and temperature (Table 1; Mohan et al., 2006)....

    [...]

  • ...However, bioenergy production is dependent on the pyrolysis conditions, in which the slow pyrolysis results in a lower yield of liquid fuel and more biochar, whereas the fast pyrolysis generates more liquid fuel (bio-oil) with relatively less biochar (Mohan et al., 2006)....

    [...]

  • ...Fast pyrolysis with a very short residence time (<2 s) is often used to produce bio-oil from biomass yielding about 75% bio-oil (Mohan et al., 2006)....

    [...]

  • ...The resulting gas mixture is known as synthetic gas or syngas (Mohan et al., 2006)....

    [...]

  • ...Slow and intermediate pyrolysis processes with a residence time of few minutes to several hours or even days are generally favored for biochar 2009), Mohan et al. (2006), and Sohi et al. (2009)]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a procedure is proposed for the determination of the viscosity of such (unstable) bio-oils, which is based on the lowest value of the falling time during the so-called heat-up period and the vapour formation delay.
Abstract: Accurate measurement of the viscosity of fuels is essential for the proper operation of fuel supply systems and atomisers. In previous years, the use of fuels derived from the fast pyrolysis of biomass (bio-oils) has been demonstrated in, for example, furnace applications. Unfortunately, these fuels are shown to be unstable and start to polymerise even at ambient conditions. At elevated temperatures, these degradation phenomena become even more significant and complex. For example, vapours will be formed, not only due to the presence of volatiles and water in the oil, but also because of the decomposition of the oil. These vapours make the viscosity measurement troublesome. In the present paper, a procedure is proposed for the determination of the viscosity of such (unstable) bio-oils. First, by varying the sample temperature, the so-called decomposition temperature, at which the formation of vapours starts, should be determined. Below that decomposition temperature, the standard procedure for viscosity measurement can be applied. At temperatures above this temperature, the appearance of vapours results in a significant increase and strong fluctuations in the falling time of the ball due to the formation of bubbles. At these latter temperatures, values for the viscosity should be calculated from the lowest value of the falling time during the so-called heat-up period and the vapour formation delay. The values for the viscosity for five types of bio-oils, derived in this way, were shown to be reliable.

24 citations

Journal ArticleDOI
TL;DR: It is concluded that a PC addition level of more than 1% by wt (on a resin solid basis) should be used to modify the mechanical properties of panels bonded with pyrolysis oil-PF resins.
Abstract: Summary Softwood bark Pyrolysis oil OSB Propylene carbonate Additive Accelerator DSC Phenol-formaldehyde (PF) resols were prepared with different proportions of phenol replaced with softwood bark pyrolysis oils under varying formaldehyde to phenolics molar ratios and sodium hydroxide contents. Propylene carbonate (PC) was added to these adhesives to improve the cure of resins. The cure behavior was characterized by differential scanning calorimetry (DSC). Cure kinetics and amount of cure of the experimental resin were improved by adding PC to the resins. Low amounts of PC were used (less than 1.5 % of PC on a resin solid basis) to avoid premature gelling of the adhesives. Results obtained by DSC suggested that PC catalyzed the resin cure reaction and also participated in resin cross-linking reactions. Low percentages of PC, 0.5 and 1 % on a resin solid basis, were added to the experimental resins for bonding strandboards. These addition levels did not significantly improve mechanical properties of strandboards. It is concluded that a PC addition level of more than 1 % by wt (on a resin solid basis) should be used to modify the mechanical properties of panels bonded with pyrolysis oil-PF resins.

23 citations

Journal ArticleDOI
TL;DR: In this paper, the lignin breakdown compounds of the walnut shell were extracted by solvent extraction using petroleum-ether (60-80 fractions), separated by preparative TLC and were fully characterized by employing GC-MS and 1 H NMR techniques.

23 citations

Journal ArticleDOI
TL;DR: In this paper, a continuous fluidized-bed plant (PDU-scale) for fast pyrolysis of lingnocellulosic biomass gives rise to bio-oil yields of 65 wt%.
Abstract: A continuous fluidized-bed plant (PDU-scale) for fast pyrolysis of lingnocellulosic biomass gives rise to bio-oil yields of 65 wt.-%. The average reactor gas residence time was 1.2 s only. The gas and charcoal yields were 15–20 wt.-%, respectively. The bio oils were chemically characterized. The main monomeric products of the thermal degradation of carbohydrates are acetic acid, hydroxyacetaldehyde, hydroxypropanone, and levoglucosan. The process described in this paper can also be used for disposal of inorganic-, metal-organic-, and chlorine-organic contaminated waste-wood. Inorganic compounds of wood preservatives are concentrated in the charcoal fraction and can be separated easily. Chlorine-organic wood preservatives are mostly degraded. The process has been positively tested as a technique for disposal, recycling, and exploitation of industrial biomass waste (wood waste, grinding grit, fibre sludge, cocoa shell and modern composites like HPL). Bio oil from fast pyrolysis can be used for the production of energy and chemical feedstock. Research for these purposes is ongoing.

22 citations

Journal ArticleDOI
TL;DR: In this paper, a fixed-bed pyrolysis liquid products of pine chips (Pinus Brutia Ten) have been identified for their structures for their elemental composition and calorific values.
Abstract: Fixed-bed pyrolysis liquid products of pine chips ( Pinus Brutia Ten.) have been identified for their structures. The solid and liquid products were analyzed to determine their elemental composition and calorific values. In particular, the liquid products were identified in detail to determine their composition and characteristics. Chemical fractionation of liquids showed that the oxygenated and polar fractions were dominant. The empirical formula of bio-oils obtained in a static pyrolysis atmosphere and in a nitrogen atmosphere are CH 1.32 O 0.54 N 0.0014 and CH 1.38 O 0.37 N 0.002 , respectively. The heating value of liquid varies from 23.1 MJ/kg to 25.4 MJ/kg in the range of 300 to 500°C pyrolysis temperature. The H/C and O/C molar ratios were 1.38 and 0.37, respectively.

21 citations