scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review

10 Mar 2006-Energy & Fuels (American Chemical Society)-Vol. 20, Iss: 3, pp 848-889
TL;DR: A review of the recent developments in the wood pyrolysis and reports the characteristics of the resulting bio-oils, which are the main products of fast wood pyrotechnics, can be found in this paper.
Abstract: Fast pyrolysis utilizes biomass to produce a product that is used both as an energy source and a feedstock for chemical production. Considerable efforts have been made to convert wood biomass to liquid fuels and chemicals since the oil crisis in mid-1970s. This review focuses on the recent developments in the wood pyrolysis and reports the characteristics of the resulting bio-oils, which are the main products of fast wood pyrolysis. Virtually any form of biomass can be considered for fast pyrolysis. Most work has been performed on wood, because of its consistency and comparability between tests. However, nearly 100 types of biomass have been tested, ranging from agricultural wastes such as straw, olive pits, and nut shells to energy crops such as miscanthus and sorghum. Forestry wastes such as bark and thinnings and other solid wastes, including sewage sludge and leather wastes, have also been studied. In this review, the main (although not exclusive) emphasis has been given to wood. The literature on woo...
Citations
More filters
Journal ArticleDOI
TL;DR: Hydrogen Production by Water−Gas Shift Reaction 4056 4.1.
Abstract: 1.0. Introduction 4044 2.0. Biomass Chemistry and Growth Rates 4047 2.1. Lignocellulose and Starch-Based Plants 4047 2.2. Triglyceride-Producing Plants 4049 2.3. Algae 4050 2.4. Terpenes and Rubber-Producing Plants 4052 3.0. Biomass Gasification 4052 3.1. Gasification Chemistry 4052 3.2. Gasification Reactors 4054 3.3. Supercritical Gasification 4054 3.4. Solar Gasification 4055 3.5. Gas Conditioning 4055 4.0. Syn-Gas Utilization 4056 4.1. Hydrogen Production by Water−Gas Shift Reaction 4056

7,067 citations

Journal ArticleDOI
TL;DR: In this paper, an updated review on fast pyrolysis of biomass for production of a liquid usually referred to as bio-oil is provided, including the major reaction systems.
Abstract: This paper provides an updated review on fast pyrolysis of biomass for production of a liquid usually referred to as bio-oil. The technology of fast pyrolysis is described including the major reaction systems. The primary liquid product is characterised by reference to the many properties that impact on its use. These properties have caused increasingly extensive research to be undertaken to address properties that need modification and this area is reviewed in terms of physical, catalytic and chemical upgrading. Of particular note is the increasing diversity of methods and catalysts and particularly the complexity and sophistication of multi-functional catalyst systems. It is also important to see more companies involved in this technology area and increased take-up of evolving upgrading processes. © 2011 Elsevier Ltd.

3,727 citations

Journal ArticleDOI
TL;DR: Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy.
Abstract: Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy. As of 2005, over 3% of the total energy consumption in the United States was supplied by biomass, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy. Similarly, the European Union received 66.1% of its renewable energy from biomass, which thus surpassed the total combined contribution from hydropower, wind power, geothermal energy, and solar power. In addition to energy, the production of chemicals from biomass is also essential; indeed, the only renewable source of liquid transportation fuels is currently obtained from biomass.

3,644 citations

Journal ArticleDOI
TL;DR: Strong acids and bases seem to be the best desorbing agents to produce arsenic concentrates, and some commercial adsorbents which include resins, gels, silica, treated silica tested for arsenic removal come out to be superior.

3,168 citations

Journal ArticleDOI
TL;DR: Due to complexity of soil-water system in nature, the effectiveness of biochars on remediation of various organic/inorganic contaminants is still uncertain.

3,163 citations


Cites background or methods from "Pyrolysis of Wood/Biomass for Bio-o..."

  • ...Pyrolysis is generally divided into fast, intermediate, and slow depending on the residence time and temperature (Table 1; Mohan et al., 2006)....

    [...]

  • ...However, bioenergy production is dependent on the pyrolysis conditions, in which the slow pyrolysis results in a lower yield of liquid fuel and more biochar, whereas the fast pyrolysis generates more liquid fuel (bio-oil) with relatively less biochar (Mohan et al., 2006)....

    [...]

  • ...Fast pyrolysis with a very short residence time (<2 s) is often used to produce bio-oil from biomass yielding about 75% bio-oil (Mohan et al., 2006)....

    [...]

  • ...The resulting gas mixture is known as synthetic gas or syngas (Mohan et al., 2006)....

    [...]

  • ...Slow and intermediate pyrolysis processes with a residence time of few minutes to several hours or even days are generally favored for biochar 2009), Mohan et al. (2006), and Sohi et al. (2009)]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the progress that has been made to the understanding of chemical and physical processes, which occur during combustion of solid fuels, is presented, and the effects of bubble formation on the transport of volatiles during thermal degradation of non-charring fuels, described through a one-step global reaction, have been modeled.

434 citations

Journal ArticleDOI
TL;DR: In this article, the kinetics of pyrolysis of lignocellulosic materials were studied with a view of providing simple kinetic models for engineering purposes, based on the results obtained by means of thermal analysis techniques.
Abstract: The kinetics of the pyrolysis of lignocellulosic materials was studied with a view of providing simple kinetic models for engineering purposes. Experimental data obtained by means of thermal analysis techniques suggest that the pyrolysis of fine particles (below 1 mm) can be considered to be controlled by pyrolysis kinetics. The rate of pyrolysis of one biomass type can be represented by the sum of the corresponding rates of the main biomass components (cellulose, lignin, hemicellulose). The kinetics of each of these components was simulated by a kinetic scheme capable of predicting the pyrolysis rate and the final weight-loss for a wide range of pyrolysis parameters including various heating conditions.

431 citations

Journal ArticleDOI
TL;DR: In this paper, an analytical scheme for the characterization of biomass-based flash pyrolysis oils was developed based on fractionation of the oils with water and on further extraction of the water-soluble fraction with diethylether.
Abstract: An analytical scheme for the characterization of biomass-based flash pyrolysis oils was developed. The scheme was based on fractionation of the oils with water and on further extraction of the water-soluble fraction with diethylether. The chemical composition of the fractions was analyzed by gas chromatography–mass spectrometry. The physical and chemical nature of straw, pine and hardwood pyrolysis oils was determined and compared with each other. Correlations between the physical properties and chemical composition of the oils were drawn. The characterization method will be utilized in further work for stabilization and upgrading tests of flash pyrolysis oils.

391 citations

Journal ArticleDOI
TL;DR: In this article, the authors briefly describe the technologies of fast pyrolysis with particular reference to the use of catalysts in chemicals production and the using of catalytic processes in upgrading the primary pyro-lysis products to higher quality and higher value fuels and chemicals.

386 citations

Journal ArticleDOI
TL;DR: In this article, three chemical families were investigated to stabilize the viscosity of biocrude during long-term storage and showed the ability to drastically reduce the aging rate of bi-products.
Abstract: The initial development of additives to stabilize the viscosity of biocrude during long-term storage has produced dramatic results. The additives investigated were ethyl acetate, methyl isobutyl ketone and methanol, acetone, methanol, acetone and methanol, and ethanol. These additives represent three chemical families, which all demonstrated the ability to drastically reduce the aging rate of biocrude, as defined by the increase in viscosity with time. Accelerated aging tests were run at 90 °C to screen the additives. The additives not only lowered the initial viscosity at 40 °C by half but also reduced the aging rate of a hot gas filtered pyrolysis oil made from hybrid poplar (NREL run 175) by factors of 1−18 compared to the original pure oil. With the best additive, methanol, at a 10 wt % level in the pyrolysis oil, the modified biocrude was still a single-phase liquid and still met the ASTM No. 4 diesel fuel specification for viscosity even after 96 h exposure to 90 °C. Based on the aging rate at 90 °C...

371 citations