scispace - formally typeset
Search or ask a question
Journal ArticleDOI

QoS routing in ad hoc wireless networks

TL;DR: This work proposes a bandwidth routing protocol for quality-of-service (QoS) support in a multihop mobile network and examines the system performance in various QoS traffic flows and mobility environments via simulation.
Abstract: The emergence of nomadic applications have generated much interest in wireless network infrastructures that support real-time communications. We propose a bandwidth routing protocol for quality-of-service (QoS) support in a multihop mobile network. The QoS routing feature is important for a mobile network to interconnect wired networks with QoS support (e.g., ATM, Internet, etc.). The QoS routing protocol can also work in a stand-alone multihop mobile network for real-time applications. This QoS routing protocol contains end-to-end bandwidth calculation and bandwidth allocation. Under such a routing protocol, the source (or the ATM gateway) is informed of the bandwidth and QoS available to any destination in the mobile network. This knowledge enables the establishment of QoS connections within the mobile network and the efficient support of real-time applications. In addition, it enables more efficient call admission control. In the case of ATM interconnection, the bandwidth information can be used to carry out intelligent handoff between ATM gateways and/or to extend the ATM virtual circuit (VC) service to the mobile network with possible renegotiation of QoS parameters at the gateway. We examine the system performance in various QoS traffic flows and mobility environments via simulation. Simulation results suggest distinct performance advantages of our protocol that calculates the bandwidth information. It is particularly useful in call admission control. Furthermore, "standby" routing enhances the performance in the mobile environment. Simulation experiments show this improvement.
Citations
More filters
Book
01 Jan 2005

9,038 citations

01 Jan 2000
TL;DR: This article briefly reviews the basic concepts about cognitive radio CR, and the need for software-defined radios is underlined and the most important notions used for such.
Abstract: An Integrated Agent Architecture for Software Defined Radio. Rapid-prototype cognitive radio, CR1, was developed to apply these.The modern software defined radio has been called the heart of a cognitive radio. Cognitive radio: an integrated agent architecture for software defined radio. Http:bwrc.eecs.berkeley.eduResearchMCMACR White paper final1.pdf. The cognitive radio, built on a software-defined radio, assumes. Radio: An Integrated Agent Architecture for Software Defined Radio, Ph.D. The need for software-defined radios is underlined and the most important notions used for such. Mitola III, Cognitive radio: an integrated agent architecture for software defined radio, Ph.D. This results in the set-theoretic ontology of radio knowledge defined in the. Cognitive Radio An Integrated Agent Architecture for Software.This article first briefly reviews the basic concepts about cognitive radio CR. Cognitive Radio-An Integrated Agent Architecture for Software Defined Radio. Cognitive Radio RHMZ 2007. Software-defined radio SDR idea 1. Cognitive radio: An integrated agent architecture for software.Cognitive Radio SOFTWARE DEFINED RADIO, AND ADAPTIVE WIRELESS SYSTEMS2 Cognitive Networks. 3 Joseph Mitola III, Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio Stockholm.

3,814 citations

Journal ArticleDOI
01 Jul 2003
TL;DR: The important role that mobile ad hoc networks play in the evolution of future wireless technologies is explained and the latest research activities in these areas are reviewed, including a summary of MANETs characteristics, capabilities, applications, and design constraints.
Abstract: Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, ‘‘ad-hoc’’ network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANETs characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future. � 2003 Elsevier B.V. All rights reserved.

1,430 citations


Cites background from "QoS routing in ad hoc wireless netw..."

  • ...[289], and QoS routing based on bandwidth calculation [166]....

    [...]

Journal ArticleDOI
TL;DR: It is proved that the proposed localized power, cost, and power-cost efficient routing algorithms are loop-free and show their efficiency by experiments.
Abstract: A cost aware metric for wireless networks based on remaining battery power at nodes was proposed for shortest-cost routing algorithms, assuming constant transmission power. Power-aware metrics, where transmission power depends on distance between nodes and corresponding shortest power algorithms were also proposed. We define a power-cost metric based on the combination of both node's lifetime and distance-based power metrics. We investigate some properties of power adjusted transmissions and show that, if additional nodes can be placed at desired locations between two nodes at distance d, the transmission power can be made linear in d as opposed to d/sup /spl alpha// dependence for /spl alpha/ /spl ges/ 2. This provides basis for power, cost, and power-cost localized routing algorithms where nodes make routing decisions solely on the basis, of location of their neighbors and destination. The power-aware routing algorithm attempts to minimize the total power needed to route a message between a source and a destination. The cost-aware routing algorithm is aimed at extending the battery's worst-case lifetime at each node. The combined power-cost localized routing algorithm attempts to minimize the total power needed and to avoid nodes with a short battery's remaining lifetime. We prove that the proposed localized power, cost, and power-cost efficient routing algorithms are loop-free and show their efficiency by experiments.

757 citations


Cites methods from "QoS routing in ad hoc wireless netw..."

  • ...All nonlocalized routing algorithms proposed in literature are variations of shortest weighted path algorithm (e.g., [5], [ 19 ], [22], [26])....

    [...]

Journal ArticleDOI
01 Feb 2003
TL;DR: This work introduces a resource reservation-based routing and signaling algorithm, Ad hoc Qos on-demand routing (AQOR), that provides end-to-end quality of service (QoS) support in mobile ad hoc networks (MANETs).
Abstract: We introduce a resource reservation-based routing and signaling algorithm, Ad hoc Qos on-demand routing (AQOR), that provides end-to-end quality of service (QoS) support, in terms of bandwidth and end-to-end delay, in mobile ad hoc networks (MANETs). The increasing use of MANETs for transferring multimedia applications such as voice, video and data, leads to the need to provide QoS support. To perform accurate admission control and resource reservation in AQOR, we have developed detailed computations that allow us to estimate the available bandwidth and end-to-end delay in unsynchronized wireless environment. AQOR also includes efficient mechanisms for QoS maintenance, including temporary reservation and destination-initiated recovery processes. The performance of AQOR is studied in detail by simulation using OPNET Modeler. The results validate that AQOR provides QoS support in ad hoc wireless networks with high reliability and low overhead.

564 citations

References
More filters
Proceedings ArticleDOI
01 Oct 1994
TL;DR: The modifications address some of the previous objections to the use of Bellman-Ford, related to the poor looping properties of such algorithms in the face of broken links and the resulting time dependent nature of the interconnection topology describing the links between the Mobile hosts.
Abstract: An ad-hoc network is the cooperative engagement of a collection of Mobile Hosts without the required intervention of any centralized Access Point. In this paper we present an innovative design for the operation of such ad-hoc networks. The basic idea of the design is to operate each Mobile Host as a specialized router, which periodically advertises its view of the interconnection topology with other Mobile Hosts within the network. This amounts to a new sort of routing protocol. We have investigated modifications to the basic Bellman-Ford routing mechanisms, as specified by RIP [5], to make it suitable for a dynamic and self-starting network mechanism as is required by users wishing to utilize ad hoc networks. Our modifications address some of the previous objections to the use of Bellman-Ford, related to the poor looping properties of such algorithms in the face of broken links and the resulting time dependent nature of the interconnection topology describing the links between the Mobile Hosts. Finally, we describe the ways in which the basic network-layer routing can be modified to provide MAC-layer support for ad-hoc networks.

6,877 citations

Proceedings ArticleDOI
09 Apr 1997
TL;DR: The proposed protocol is a new distributed routing protocol for mobile, multihop, wireless networks that is highly adaptive, efficient and scalable; being best-suited for use in large, dense, mobile networks.
Abstract: We present a new distributed routing protocol for mobile, multihop, wireless networks. The protocol is one of a family of protocols which we term "link reversal" algorithms. The protocol's reaction is structured as a temporally-ordered sequence of diffusing computations; each computation consisting of a sequence of directed link reversals. The protocol is highly adaptive, efficient and scalable; being best-suited for use in large, dense, mobile networks. In these networks, the protocol's reaction to link failures typically involves only a localized "single pass" of the distributed algorithm. This capability is unique among protocols which are stable in the face of network partitions, and results in the protocol's high degree of adaptivity. This desirable behavior is achieved through the novel use of a "physical or logical clock" to establish the "temporal order" of topological change events which is used to structure (or order) the algorithm's reaction to topological changes. We refer to the protocol as the temporally-ordered routing algorithm (TORA).

2,211 citations

Journal ArticleDOI
TL;DR: This paper describes a self-organizing, multihop, mobile radio network which relies on a code-division access scheme for multimedia support that provides an efficient, stable infrastructure for the integration of different types of traffic in a dynamic radio network.
Abstract: This paper describes a self-organizing, multihop, mobile radio network which relies on a code-division access scheme for multimedia support. In the proposed network architecture, nodes are organized into nonoverlapping clusters. The clusters are independently controlled, and are dynamically reconfigured as the nodes move. This network architecture has three main advantages. First, it provides spatial reuse of the bandwidth due to node clustering. Second, bandwidth can be shared or reserved in a controlled fashion in each cluster. Finally, the cluster algorithm is robust in the face of topological changes caused by node motion, node failure, and node insertion/removal. Simulation shows that this architecture provides an efficient, stable infrastructure for the integration of different types of traffic in a dynamic radio network.

1,695 citations


"QoS routing in ad hoc wireless netw..." refers background in this paper

  • ...Routing with a QoS indication is thus needed in order to efficiently manage bandwidth resources....

    [...]

Journal ArticleDOI
TL;DR: A multi-cluster, multi-hop packet radio network architecture for wireless adaptive mobile information systems is presented that supports multimedia traffic and relies on both time division and code division access schemes.
Abstract: A multi-cluster, multi-hop packet radio network architecture for wireless adaptive mobile information systems is presented. The proposed network supports multimedia traffic and relies on both time division and code division access schemes. This radio network is not supported by a wired infrastructure as conventional cellular systems are. Thus, it can be instantly deployed in areas with no infrastructure at all. By using a distributed clustering algorithm, nodes are organized into clusters. The clusterheads act as local coordinators to resolve channel scheduling, perform power measurement/control, maintain time division frame synchronization, and enhance the spatial reuse of time slots and codes. Moreover, to guarantee bandwidth for real time traffic, the architecture supports virtual circuits and allocates bandwidth to circuits at call setup time. The network is scalable to large numbers of nodes, and can handle mobility. Simulation experiments evaluate the performance of the proposed scheme in static and mobile environments.

1,610 citations

Journal ArticleDOI
TL;DR: Simulation work is reported indicating that packet reservation multiple access (PRMA) allows a variety of information sources to share the same wireless access channel and achieves a promising combination of voice quality and bandwidth efficiency.
Abstract: Simulation work is reported indicating that packet reservation multiple access (PRMA) allows a variety of information sources to share the same wireless access channel. Some of the sources, such as speech terminals, are classified as periodic and others, such as signaling, are classified as random. Packets from all sources contend for access to channel time slots. When a periodic information terminal succeeds in gaining access, it reserves subsequent time slots for uncontested transmission. Both computer simulations and a listening test reveal that PRMA achieves a promising combination of voice quality and bandwidth efficiency. >

890 citations


"QoS routing in ad hoc wireless netw..." refers background in this paper

  • ...Routing with a QoS indication is thus needed in order to efficiently manage bandwidth resources....

    [...]