scispace - formally typeset
Search or ask a question
Journal ArticleDOI

QPSK 3R regenerator using a phase sensitive amplifier

25 Jul 2016-Optics Express (The Optical Society)-Vol. 24, Iss: 15, pp 16649-16658
TL;DR: A black box phase sensitive amplifier based 3R regeneration scheme is proposed for non-return to zero quadrature phase shift keyed formatted signals to achieve performance improvements at the presence of input phase distortion.
Abstract: A black box phase sensitive amplifier based 3R regeneration scheme is proposed for non-return to zero quadrature phase shift keyed formatted signals. Performance improvements of more than 2 dB are achieved at the presence of input phase distortion.
Citations
More filters
Journal ArticleDOI
TL;DR: All-optical amplitude regeneration of 4-level pulse amplitude modulated signals (PAM4) based on a single nonlinear optical loop mirror (NOLM) is experimentally demonstrated and an overall EVM improvement of 0.92dB is obtained by optimizing input power and distortion strength.
Abstract: We experimentally demonstrate all-optical amplitude regeneration of 4-level pulse amplitude modulated signals (PAM4) based on a single nonlinear optical loop mirror (NOLM). Four power-plateau regions are achieved using return-to-zero (RZ) pulses of narrow pulse-width, enabling large nonlinear phase shifts within the highly nonlinear fiber (HNLF). We quantify noise suppression characteristics at each amplitude level and obtain an overall EVM improvement of 0.92dB by optimizing input power and distortion strength. A theoretical analysis has been also carried out matching the experimental results and revealing the design characteristics of the regenerator’s nonlinear transfer function.

27 citations

Journal ArticleDOI
TL;DR: In this paper, an all-optical regeneration scheme based on cascaded NOLMs for pulse amplitude modulation (PAM) signals is proposed, where the optimal working point (WP) of every NOLM can be set by means of the normalized power transfer function (NPTF) and normalized differential gain (NDG).
Abstract: An all-optical regeneration scheme based on cascaded nonlinear-optical loop mirrors (NOLMs) for pulse amplitude modulation (PAM) signals is proposed. The optimal working point (WP) of every NOLM can be set by means of the normalized power transfer function (NPTF) and normalized differential gain (NDG). As examples, the PAM-4 and PAM-8 regenerations based on cascaded two-NOLMs are demonstrated by optimizing the splitting ratios of the optical couplers and the gain coefficient of the inter-stage matching amplifier, achieving the Q-factor improvements of 25.32dB and 21.18dB, respectively. Compared to the conventional regenerator scheme, a 1.69dB signal-to-noise ratio (SNR) gain is achieved due to the flat power response within the regenerative range.

11 citations

Journal ArticleDOI
TL;DR: Experimental demonstration of an all-optical 3 R regeneration scheme for differential phase-shift keying (DPSK) signals, which consists of a clock recovery module and a phase-regeneration module, shows that the receiver sensitivity is improved by more than 1.6 dB for a bit error rate of 1 E-9.
Abstract: This paper presents experimental demonstration of an all-optical 3 R (re-amplification, re-shaping, re-timing) regeneration scheme for differential phase-shift keying (DPSK) signals, which consists of a clock recovery module and a phase-regeneration module. The clock recovery module is based on a mode-locked fiber laser, and the optical clock is extracted with low timing jitter of 29 ps from a degraded 10 Gb/s DPSK signal. The phase regenerator consists of a one-bit delay interferometer demodulation stage and a semiconductor optical amplifier in which cross-phase modulation and nonlinear polarization rotation occur simultaneously. The results show that, after 3 R regeneration, the receiver sensitivity is improved by more than 1.6 dB for a bit error rate of 1 E-9.

7 citations

Journal ArticleDOI
TL;DR: In this article , a Mach-Zehnder- interferometer (MZI)-nested nonlinear optical loop mirror (NOLM) PPAR scheme is proposed and verified by theory and experiment.
Abstract: The principle of phase-preserving regeneration is revealed by a simple theoretical model, that is, in the regenerated signals the linear phase shift component is dominant over the nonlinear counterpart for phase-preserving amplitude regeneration (PPAR). A Mach-Zehnder- interferometer (MZI)-nested nonlinear optical loop mirror (NOLM) PPAR scheme is proposed and verified by theory and experiment. Our experiment shows that for QPSK regeneration the noise reduction ratio in terms of error vector magnitude (EVM) is linearly dependent on the input signal-to-noise ratio (SNR) with the slope of 0.78 and the average phase disturbation is 4.37 degree, close to the theoretical value of 3.8 degrees. The influence of the optical couplers on the PPAR performance is in detail discussed.

3 citations

Journal ArticleDOI
TL;DR: This work has re-examined the geometrical interpretation of the classical nonlinear four-wave mixing equations for the specific scheme of a phase sensitive one-pump fiber optical parametric amplification, which has recently attracted revived interest in the optical communications.
Abstract: Visualisation of complex nonlinear equation solutions is a useful analysis tool for various scientific and engineering applications. We have re-examined the geometrical interpretation of the classical nonlinear four-wave mixing equations for the specific scheme of a phase sensitive one-pump fiber optical parametric amplification, which has recently attracted revived interest in the optical communications due to potential low noise properties of such amplifiers. Analysis of the phase portraits of the corresponding dynamical systems provide valuable additional insight into field dynamics and properties of the amplifiers. Simple geometric approach has been proposed to describe evolution of the waves, involved in phase-sensitive fiber optical parametric amplification (PS-FOPA) process, using a Hamiltonian structure of the governing equations. We have demonstrated how the proposed approach can be applied to the optimization problems arising in the design of the specific PS-FOPA scheme. The method considered here is rather general and can be used in various applications.

2 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a theoretical analysis of the dual-polarization constant modulus algorithm is presented, where the control surfaces several different equalizer algorithms are derived, including the decision-directed, trained, and the radially directed equalizer for both polarization division multiplexed quadriphase shift keyed (PDM-QPSK) and 16 level quadrature amplitude modulation (PDm-16-QAM).
Abstract: Digital coherent receivers have caused a revolution in the design of optical transmission systems, due to the subsystems and algorithms embedded within such a receiver. After giving a high-level overview of the subsystems, the optical front end, the analog-to-digital converter (ADC) and the digital signal processing (DSP) algorithms, which relax the tolerances on these subsystems are discussed. Attention is then turned to the compensation of transmission impairments, both static and dynamic. The discussion of dynamic-channel equalization, which forms a significant part of the paper, includes a theoretical analysis of the dual-polarization constant modulus algorithm, where the control surfaces several different equalizer algorithms are derived, including the constant modulus, decision-directed, trained, and the radially directed equalizer for both polarization division multiplexed quadriphase shift keyed (PDM-QPSK) and 16 level quadrature amplitude modulation (PDM-16-QAM). Synchronization algorithms employed to recover the timing and carrier phase information are then examined, after which the data may be recovered. The paper concludes with a discussion of the challenges for future coherent optical transmission systems.

772 citations

Journal ArticleDOI
TL;DR: The development of the first practical ('black-box') all-optical regenerator capable of removing both phase and amplitude noise from binary phase-encoded optical communications signals is reported.
Abstract: Fibre-optic communications systems have traditionally carried data using binary (on-off) encoding of the light amplitude. However, next-generation systems will use both the amplitude and phase of the optical carrier to achieve higher spectral efficiencies and thus higher overall data capacities(1,2). Although this approach requires highly complex transmitters and receivers, the increased capacity and many further practical benefits that accrue from a full knowledge of the amplitude and phase of the optical field(3) more than outweigh this additional hardware complexity and can greatly simplify optical network design. However, use of the complex optical field gives rise to a new dominant limitation to system performance-nonlinear phase noise(4,5). Developing a device to remove this noise is therefore of great technical importance. Here, we report the development of the first practical ('black-box') all-optical regenerator capable of removing both phase and amplitude noise from binary phase-encoded optical communications signals.

549 citations

Journal ArticleDOI
TL;DR: Theoretical results and numerical simulations conclude that the EVM is an appropriate metric for optical channels limited by additive white Gaussian noise.
Abstract: We examine the relation between optical signal-to-noise ratio (OSNR), error vector magnitude (EVM), and bit-error ratio (BER). Theoretical results and numerical simulations are compared to measured values of OSNR, EVM, and BER. We conclude that the EVM is an appropriate metric for optical channels limited by additive white Gaussian noise. Results are supported by experiments with six modulation formats at symbol rates of 20 and 25 GBd generated by a software-defined transmitter.

539 citations

Journal ArticleDOI
TL;DR: A practical scheme to perform the fast Fourier transform in the optical domain is introduced, which performs an optical real-time FFT on the consolidated OFDM data stream, thereby demultiplexing the signal into lower bit rate subcarrier tributaries, which can then be processed electronically.
Abstract: A practical scheme to perform the fast Fourier transform in the optical domain is introduced. Optical real-time FFT signal processing is performed at speeds far beyond the limits of electronic digital processing, and with negligible energy consumption. To illustrate the power of the method we demonstrate an optical 400 Gbit/s OFDM receiver. It performs an optical real-time FFT on the consolidated OFDM data stream, thereby demultiplexing the signal into lower bit rate subcarrier tributaries, which can then be processed electronically.

186 citations

Journal ArticleDOI
TL;DR: An all-optical signal processing architecture is reported that enables, for the first time, multilevel all-Optical quantization of phase-encoded optical signals.
Abstract: The exponentially increasing capacity demand in information systems will be met by carefully exploiting the complementary strengths of electronics and optics. Optical signal processing provides simple but powerful pipeline functions that offer high speed, low power, low latency and a route to densely parallel execution. A number of functions such as modulation and sampling, complex filtering and Fourier transformation have already been demonstrated. However, the key functionality of all-optical quantization has still not been addressed effectively. Here, we report an all-optical signal processing architecture that enables, for the first time, multilevel all-optical quantization of phase-encoded optical signals. A four-wavemixing process is used to generate a comb of phase harmonics of the input signal, and a two-pump parametric process to coherently combine a selected harmonic with the input signal, realizing phase quantization. We experimentally demonstrate operation up to six levels

159 citations