scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quadrature-based polynomial optimization

01 Jul 2020-Optimization Letters (Springer Berlin Heidelberg)-Vol. 14, Iss: 5, pp 1027-1036
TL;DR: It is shown that Lasserre measure-based hierarchies for polynomial optimization can be implemented by directly computing the discrete minimum at a suitable set of algebraic quadrature nodes.
Abstract: We show that Lasserre measure-based hierarchies for polynomial optimization can be implemented by directly computing the discrete minimum at a suitable set of algebraic quadrature nodes. The sampling cardinality can be much lower than in other approaches based on grids or norming meshes. All the vast literature on multivariate algebraic quadrature becomes in such a way relevant to polynomial optimization.
Citations
More filters
Journal ArticleDOI
TL;DR: This analysis applies to simplices, balls and convex bodies that locally look like a ball, while also allowing for a broader class of reference measures, including the Lebesgue measure.
Abstract: We consider the problem of computing the minimum value fmin,K of a polynomial f over a compact set K⊆Rn, which can be reformulated as finding a probability measure ν on K minimizing ∫Kfdν. Lasserre showed that it suffices to consider such measures of the form ν=qμ, where q is a sum-of-squares polynomial and μ is a given Borel measure supported on K. By bounding the degree of q by 2r one gets a converging hierarchy of upper bounds f(r) for fmin,K. When K is the hypercube [−1,1]n, equipped with the Chebyshev measure, the parameters f(r) are known to converge to fmin,K at a rate in O(1/r2). We extend this error estimate to a wider class of convex bodies, while also allowing for a broader class of reference measures, including the Lebesgue measure. Our analysis applies to simplices, balls and convex bodies that locally look like a ball. In addition, we show an error estimate in O(logr/r) when K satisfies a minor geometrical condition, and in O(log2r/r2) when K is a convex body, equipped with the Lebesgue measure. This improves upon the currently best known error estimates in O(1/r√) and O(1/r) for these two respective cases.

31 citations

Journal ArticleDOI
TL;DR: The convergence rate of a hierarchy of upper bounds for polynomial minimization problems, proposed by Lasserre (SIAM J Optim 21(3):864-885, 2011), for the special case when the feasible set is the unit (hyper)sphere was studied in this article.
Abstract: We study the convergence rate of a hierarchy of upper bounds for polynomial minimization problems, proposed by Lasserre (SIAM J Optim 21(3):864–885, 2011), for the special case when the feasible set is the unit (hyper)sphere. The upper bound at level r∈N of the hierarchy is defined as the minimal expected value of the polynomial over all probability distributions on the sphere, when the probability density function is a sum-of-squares polynomial of degree at most 2r with respect to the surface measure. We show that the rate of convergence is O(1/r2) and we give a class of polynomials of any positive degree for which this rate is tight. In addition, we explore the implications for the related rate of convergence for the generalized problem of moments on the sphere.

30 citations

Book ChapterDOI
17 Nov 2019
TL;DR: This work will review some results on inner and inner conic approximations of the convex cone of positive Borel measures, with a special focus on the convergence rate of the hierarchies of upper and lower bounds for the general problem of moments that are obtained from these inner and outer approximation.
Abstract: The generalized problem of moments is a conic linear optimization problem over the convex cone of positive Borel measures with given support. It has a large variety of applications, including global optimization of polynomials and rational functions, option pricing in finance, constructing quadrature schemes for numerical integration, and distributionally robust optimization. A usual solution approach, due to J.B. Lasserre, is to approximate the convex cone of positive Borel measures by finite dimensional outer and inner conic approximations. We will review some results on these approximations, with a special focus on the convergence rate of the hierarchies of upper and lower bounds for the general problem of moments that are obtained from these inner and outer approximations.

25 citations

Posted Content
TL;DR: The rate of convergence of a hierarchy of upper bounds for polynomial minimization problems, proposed by Lasserre, is shown to be O(1/r^2) and a class of polynomials of any positive degree for which this rate is tight.
Abstract: We study the convergence rate of a hierarchy of upper bounds for polynomial minimization problems, proposed by Lasserre [SIAM J. Optim. 21(3) (2011), pp. 864-885], for the special case when the feasible set is the unit (hyper)sphere. The upper bound at level r of the hierarchy is defined as the minimal expected value of the polynomial over all probability distributions on the sphere, when the probability density function is a sum-of-squares polynomial of degree at most 2r with respect to the surface measure. We show that the exact rate of convergence is Theta(1/r^2), and explore the implications for the related rate of convergence for the generalized problem of moments on the sphere.

19 citations

Journal ArticleDOI
09 Jul 2020
TL;DR: In this paper, a numerical package for the computation of a near G-optimal polynomial regression design of degree m on a finite design space X ⊂ R d, by few iterations of a basic multiplicative algorithm followed by Tchakaloff-like compression of the discrete measure keeping the reached G-efficiency, via an accelerated version of the Lawson-Hanson algorithm for Non-Negative Least Squares (NNLS) problems.
Abstract: We provide a numerical package for the computation of a d-variate near G-optimal polynomial regression design of degree m on a finite design space X ⊂ R d , by few iterations of a basic multiplicative algorithm followed by Tchakaloff-like compression of the discrete measure keeping the reached G-efficiency, via an accelerated version of the Lawson-Hanson algorithm for Non-Negative Least Squares (NNLS) problems. This package can solve on a personal computer large-scale problems where c a r d ( X ) × dim ( P 2 m d ) is up to 10 8 – 10 9 , being dim ( P 2 m d ) = 2 m + d d = 2 m + d 2 m . Several numerical tests are presented on complex shapes in d = 3 and on hypercubes in d > 3 .

7 citations

References
More filters
Journal ArticleDOI
TL;DR: Parlett as discussed by the authors presents mathematical knowledge that is needed in order to understand the art of computing eigenvalues of real symmetric matrices, either all of them or only a few.
Abstract: According to Parlett, 'Vibrations are everywhere, and so too are the eigenvalues associated with them. As mathematical models invade more and more disciplines, we can anticipate a demand for eigenvalue calculations in an ever richer variety of contexts.' Anyone who performs these calculations will welcome the reprinting of Parlett's book (originally published in 1980). In this unabridged, amended version, Parlett covers aspects of the problem that are not easily found elsewhere. The chapter titles convey the scope of the material succinctly. The aim of the book is to present mathematical knowledge that is needed in order to understand the art of computing eigenvalues of real symmetric matrices, either all of them or only a few. The author explains why the selected information really matters and he is not shy about making judgments. The commentary is lively but the proofs are terse.

3,115 citations

Book
01 Jan 1980
TL;DR: Parlett as discussed by the authors presents mathematical knowledge that is needed in order to understand the art of computing eigenvalues of real symmetric matrices, either all of them or only a few.
Abstract: According to Parlett, 'Vibrations are everywhere, and so too are the eigenvalues associated with them. As mathematical models invade more and more disciplines, we can anticipate a demand for eigenvalue calculations in an ever richer variety of contexts.' Anyone who performs these calculations will welcome the reprinting of Parlett's book (originally published in 1980). In this unabridged, amended version, Parlett covers aspects of the problem that are not easily found elsewhere. The chapter titles convey the scope of the material succinctly. The aim of the book is to present mathematical knowledge that is needed in order to understand the art of computing eigenvalues of real symmetric matrices, either all of them or only a few. The author explains why the selected information really matters and he is not shy about making judgments. The commentary is lively but the proofs are terse.

3,022 citations

Journal ArticleDOI
TL;DR: This paper describes how the published cubature formulas for the approximation of multivariate integrals over some standard regions are made available to a larger audience via the World Wide Web.

269 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a general theoretical foundation for the construction of cubature formulae to approximate multivariate integrals, which are exact for certain vector spaces of polynomials.
Abstract: In this paper we present a general, theoretical foundation for the construction of cubature formulae to approximate multivariate integrals. The focus is on cubature formulae that are exact for certain vector spaces of polynomials. Our main quality criteria are the algebraic and trigonometric degrees. The constructions using ideal theory and invariant theory are outlined. The known lower bounds for the number of points are surveyed and characterizations of minimal cubature formulae are given. We include references to all known minimal cubature formulae. Finally, some methods to construct cubature formulae illustrate the previously introduced concepts and theorems.

209 citations