scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Quantifying Coherence

TL;DR: In this article, a rigorous framework for quantification of coherence and identification of intuitive and easily computable measures for coherence has been proposed by adopting coherence as a physical resource.
Abstract: We introduce a rigorous framework for the quantification of coherence and identify intuitive and easily computable measures of coherence We achieve this by adopting the viewpoint of coherence as a physical resource By determining defining conditions for measures of coherence we identify classes of functionals that satisfy these conditions and other, at first glance natural quantities, that do not qualify as coherence measure We conclude with an outline of the questions that remain to be answered to complete the theory of coherence as a resource
Citations
More filters
Journal ArticleDOI
TL;DR: An operational theory of coherence (or of superposition) in quantum systems is established, by focusing on the optimal rate of performance of certain tasks, by demonstrating that the coherence theory is generically an irreversible theory by a simple criterion that completely characterizes all reversible states.
Abstract: We establish an operational theory of coherence (or of superposition) in quantum systems, by focusing on the optimal rate of performance of certain tasks. Namely, we introduce the two basic concepts-"coherence distillation" and "coherence cost"-in the processing quantum states under so-called incoherent operations [Baumgratz, Cramer, and Plenio, Phys. Rev. Lett. 113, 140401 (2014)]. We, then, show that, in the asymptotic limit of many copies of a state, both are given by simple single-letter formulas: the distillable coherence is given by the relative entropy of coherence (in other words, we give the relative entropy of coherence its operational interpretation), and the coherence cost by the coherence of formation, which is an optimization over convex decompositions of the state. An immediate corollary is that there exists no bound coherent state in the sense that one would need to consume coherence to create the state, but no coherence could be distilled from it. Further, we demonstrate that the coherence theory is generically an irreversible theory by a simple criterion that completely characterizes all reversible states.

876 citations

Journal ArticleDOI
TL;DR: This paper introduced a new development in theoretical quantum physics, the ''resource-theoretic'' point of view, which aims to be closely linked to experiment, and to state exactly what result you can hope to achieve for what expenditure of effort in the laboratory.
Abstract: This review introduces a new development in theoretical quantum physics, the ``resource-theoretic'' point of view. The approach aims to be closely linked to experiment, and to state exactly what result you can hope to achieve for what expenditure of effort in the laboratory. This development is an extension of the principles of thermodynamics to quantum problems; but there are resources that would never have been considered previously in thermodynamics, such as shared knowledge of a frame of reference. Many additional examples and new quantifications of resources are provided.

841 citations

Journal ArticleDOI
TL;DR: This work demonstrates the usefulness of the approach by proving that the fidelity-based geometric measure of coherence is a full convex coherence monotone, and deriving a closed formula for it on arbitrary single-qubit states.
Abstract: Quantum coherence is an essential ingredient in quantum information processing and plays a central role in emergent fields such as nanoscale thermodynamics and quantum biology. However, our understanding and quantitative characterization of coherence as an operational resource are still very limited. Here we show that any degree of coherence with respect to some reference basis can be converted to entanglement via incoherent operations. This finding allows us to define a novel general class of measures of coherence for a quantum system of arbitrary dimension, in terms of the maximum bipartite entanglement that can be generated via incoherent operations applied to the system and an incoherent ancilla. The resulting measures are proven to be valid coherence monotones satisfying all the requirements dictated by the resource theory of quantum coherence. We demonstrate the usefulness of our approach by proving that the fidelity-based geometric measure of coherence is a full convex coherence monotone, and deriving a closed formula for it on arbitrary single-qubit states. Our work provides a clear quantitative and operational connection between coherence and entanglement, two landmark manifestations of quantum theory and both key enablers for quantum technologies.

753 citations

Journal ArticleDOI
TL;DR: It is shown that free energy relations cannot properly describe quantum coherence in thermodynamic processes, and it is found that coherence transformations are always irreversible.
Abstract: Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilard engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement. The statistical nature of standard thermodynamics provides an incomplete picture for individual processes at the nanoscale, and new relations have been developed to extend it. Here, the authors show that by quantifying time-asymmetry it is also possible to characterize how quantum coherence is modified in such processes.

664 citations

Journal ArticleDOI
TL;DR: The robustness of coherence is defined and proven to be a full monotone in the context of the recently introduced resource theories of quantum coherence, and the measure is shown to be observable.
Abstract: Quantifying coherence is an essential endeavour for both quantum foundations and quantum technologies. Here the robustness of coherence is defined and proven a full monotone in the context of the recently introduced resource theories of quantum coherence. The measure is shown to be observable, as it can be recast as the expectation value of a coherence witness operator for any quantum state. The robustness of coherence is evaluated analytically on relevant classes of states, and an efficient semidefinite program that computes it on general states is given. An operational interpretation is finally provided: the robustness of coherence quantifies the advantage enabled by a quantum state in a phase discrimination task.

480 citations