scispace - formally typeset
Open AccessJournal ArticleDOI

Quantifying defects in graphene via Raman spectroscopy at different excitation energies

Reads0
Chats0
TLDR
It is found that the ratio between the D and G peak intensities, for a given defect density, strongly depends on the laser excitation energy, and a simple equation for the determination of the point defect density in graphene via Raman spectroscopy is presented.
Abstract
We present a Raman study of Ar(+)-bombarded graphene samples with increasing ion doses. This allows us to have a controlled, increasing, amount of defects. We find that the ratio between the D and G peak intensities for a given defect density strongly depends on the laser excitation energy. We quantify this effect and present a simple equation for the determination of the point defect density in graphene via Raman spectroscopy for any visible excitation energy. We note that, for all excitations, the D to G intensity ratio reaches a maximum for an inter-defect distance ~3nm. Thus, a given ratio could correspond to two different defect densities, above or below the maximum. The analysis of the G peak width and its dispersion with excitation energy solves this ambiguity.

read more

Citations
More filters
Journal ArticleDOI

Raman spectroscopy as a versatile tool for studying the properties of graphene

TL;DR: The state of the art, future directions and open questions in Raman spectroscopy of graphene are reviewed, and essential physical processes whose importance has only recently been recognized are described.
Journal ArticleDOI

Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

Andrea C. Ferrari, +68 more
- 04 Mar 2015 - 
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Journal ArticleDOI

Probing the Nature of Defects in Graphene by Raman Spectroscopy

TL;DR: A detailed analysis of the Raman spectra of graphene containing different type of defects is presented, finding that the intensity ratio of the D and D' peak is maximum for sp(3)-defects, it decreases for vacancy-like defects, and it reaches a minimum for boundaries in graphite.
Journal ArticleDOI

Raman spectroscopy of graphene-based materials and its applications in related devices.

TL;DR: The essential Raman scattering processes of the entire first- and second-order modes in intrinsic graphene are described and the extensive capabilities of Raman spectroscopy for the investigation of the fundamental properties of graphene under external perturbations are described.
Journal ArticleDOI

Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Selective Hydrogen Separation

TL;DR: In this paper, the authors reported ultrathin graphene oxide (GO) membranes, with thickness approaching 1.8 nm, which showed mixture separation selectivities as high as 3400 and 900 for H2/CO2 and H2 /N2 mixtures, respectively, through selective structural defects on GO.
References
More filters
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Journal ArticleDOI

Interpretation of Raman spectra of disordered and amorphous carbon

TL;DR: In this paper, a model and theoretical understanding of the Raman spectra in disordered and amorphous carbon is given, and the nature of the G and D vibration modes in graphite is analyzed in terms of the resonant excitation of \ensuremath{\pi} states and the long-range polarizability of the long range bonding.
Journal ArticleDOI

Raman Spectrum of Graphite

TL;DR: Raman spectra are reported from single crystals of graphite and other graphite materials as mentioned in this paper, and the Raman intensity of this band is inversely proportional to the crystallite size and is caused by a breakdown of the k-selection rule.
Journal ArticleDOI

Raman spectroscopy of graphene and graphite: Disorder, electron phonon coupling, doping and nonadiabatic effects

TL;DR: In this article, the authors focus on the origin of the D and G peaks and the second order of D peak and show that the G and 2 D Raman peaks change in shape, position and relative intensity with number of graphene layers.
Journal ArticleDOI

Boron nitride substrates for high-quality graphene electronics

TL;DR: Graphene devices on h-BN substrates have mobilities and carrier inhomogeneities that are almost an order of magnitude better than devices on SiO(2).
Related Papers (5)