scispace - formally typeset
Open accessJournal ArticleDOI: 10.3390/JIMAGING7030044

Quantitative Comparison of Deep Learning-Based Image Reconstruction Methods for Low-Dose and Sparse-Angle CT Applications.

02 Mar 2021-Journal of Imaging (Multidisciplinary Digital Publishing Institute)-Vol. 7, Iss: 3, pp 44
Abstract: The reconstruction of computed tomography (CT) images is an active area of research. Following the rise of deep learning methods, many data-driven models have been proposed in recent years. In this work, we present the results of a data challenge that we organized, bringing together algorithm experts from different institutes to jointly work on quantitative evaluation of several data-driven methods on two large, public datasets during a ten day sprint. We focus on two applications of CT, namely, low-dose CT and sparse-angle CT. This enables us to fairly compare different methods using standardized settings. As a general result, we observe that the deep learning-based methods are able to improve the reconstruction quality metrics in both CT applications while the top performing methods show only minor differences in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). We further discuss a number of other important criteria that should be taken into account when selecting a method, such as the availability of training data, the knowledge of the physical measurement model and the reconstruction speed.

... read more

Topics: Iterative reconstruction (53%)
Citations
  More

8 results found


Open accessJournal ArticleDOI: 10.3390/JIMAGING7040074
20 Apr 2021-Journal of Imaging
Abstract: Over recent years, deep learning (DL) has established itself as a powerful tool across a broad spectrum of domains in imaging—e [...]

... read more

2 Citations


Open accessJournal ArticleDOI: 10.3390/JIMAGING7110243
17 Nov 2021-Journal of Imaging
Abstract: Over recent years, deep learning methods have become an increasingly popular choice for solving tasks from the field of inverse problems. Many of these new data-driven methods have produced impressive results, although most only give point estimates for the reconstruction. However, especially in the analysis of ill-posed inverse problems, the study of uncertainties is essential. In our work, we apply generative flow-based models based on invertible neural networks to two challenging medical imaging tasks, i.e., low-dose computed tomography and accelerated medical resonance imaging. We test different architectures of invertible neural networks and provide extensive ablation studies. In most applications, a standard Gaussian is used as the base distribution for a flow-based model. Our results show that the choice of a radial distribution can improve the quality of reconstructions.

... read more

Topics: Deep learning (56%), Artificial neural network (53%), Medical imaging (52%) ... read more

1 Citations


Open accessJournal ArticleDOI: 10.3390/S21217228
Chun-Yi Chiu, Yung-Hui Huang1, Wei-Chang Du1, Chi-Yuan Wang1  +4 moreInstitutions (1)
30 Oct 2021-Sensors
Abstract: Positron emission tomography (PET) can provide functional images and identify abnormal metabolic regions of the whole-body to effectively detect tumor presence and distribution. The filtered back-projection (FBP) algorithm is one of the most common images reconstruction methods. However, it will generate strike artifacts on the reconstructed image and affect the clinical diagnosis of lesions. Past studies have shown reduction in strike artifacts and improvement in quality of images by two-dimensional morphological structure operators (2D-MSO). The morphological structure method merely processes the noise distribution of 2D space and never considers the noise distribution of 3D space. This study was designed to develop three-dimensional-morphological structure operators (3D MSO) for nuclear medicine imaging and effectively eliminating strike artifacts without reducing image quality. A parallel operation was also used to calculate the minimum background standard deviation of the images for three-dimensional morphological structure operators with the optimal response curve (3D-MSO/ORC). As a result of Jaszczak phantom and rat verification, 3D-MSO/ORC showed better denoising performance and image quality than the 2D-MSO method. Thus, 3D MSO/ORC with a 3 × 3 × 3 mask can reduce noise efficiently and provide stability in FBP images.

... read more

Topics: Image quality (54%), Noise reduction (50%)

Open accessPosted Content
Abstract: Deep image prior was recently introduced as an effective prior for image reconstruction. It represents the image to be recovered as the output of a deep convolutional neural network, and learns the network's parameters such that the output fits the corrupted observation. Despite its impressive reconstructive properties, the approach is slow when compared to learned or traditional reconstruction techniques. Our work develops a two-stage learning paradigm to address the computational challenge: (i) we perform a supervised pretraining of the network on a synthetic dataset; (ii) we fine-tune the network's parameters to adapt to the target reconstruction. We showcase that pretraining considerably speeds up the subsequent reconstruction from real-measured micro computed tomography data of biological specimens. The code and additional experimental materials are available at this https URL

... read more


Open accessPosted Content
Abstract: Over the last years, deep learning methods have become an increasingly popular choice to solve tasks from the field of inverse problems. Many of these new data-driven methods have produced impressive results, although most only give point estimates for the reconstruction. However, especially in the analysis of ill-posed inverse problems, the study of uncertainties is essential. In our work, we apply generative flow-based models based on invertible neural networks to two challenging medical imaging tasks, i.e. low-dose computed tomography and accelerated medical resonance imaging. We test different architectures of invertible neural networks and provide extensive ablation studies. In most applications, a standard Gaussian is used as the base distribution for a flow-based model. Our results show that the choice of a radial distribution can improve the quality of reconstructions.

... read more

Topics: Deep learning (56%), Artificial neural network (53%), Medical imaging (52%) ... read more

References
  More

79 results found


Journal ArticleDOI: 10.1109/TIP.2003.819861
Abstract: Objective methods for assessing perceptual image quality traditionally attempted to quantify the visibility of errors (differences) between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapted for extracting structural information from a scene, we introduce an alternative complementary framework for quality assessment based on the degradation of structural information. As a specific example of this concept, we develop a structural similarity index and demonstrate its promise through a set of intuitive examples, as well as comparison to both subjective ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000. A MATLAB implementation of the proposed algorithm is available online at http://www.cns.nyu.edu//spl sim/lcv/ssim/.

... read more

Topics: Image quality (61%), Subjective video quality (56%), Human visual system model (56%) ... read more

30,333 Citations


Open accessJournal ArticleDOI: 10.3156/JSOFT.29.5_177_2
Ian Goodfellow1, Jean Pouget-Abadie1, Mehdi Mirza1, Bing Xu1  +4 moreInstitutions (2)
08 Dec 2014-
Abstract: We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to ½ everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples.

... read more

Topics: Generative model (64%), Discriminative model (54%), Approximate inference (53%) ... read more

29,410 Citations


Open accessBook ChapterDOI: 10.1007/978-3-319-24574-4_28
05 Oct 2015-
Abstract: There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net .

... read more

Topics: Brain segmentation (57%), Deep learning (54%), Segmentation (50%)

28,273 Citations


Open accessJournal ArticleDOI: 10.1109/34.56205
Pietro Perona1, Jitendra Malik1Institutions (1)
Abstract: A new definition of scale-space is suggested, and a class of algorithms used to realize a diffusion process is introduced. The diffusion coefficient is chosen to vary spatially in such a way as to encourage intraregion smoothing rather than interregion smoothing. It is shown that the 'no new maxima should be generated at coarse scales' property of conventional scale space is preserved. As the region boundaries in the approach remain sharp, a high-quality edge detector which successfully exploits global information is obtained. Experimental results are shown on a number of images. Parallel hardware implementations are made feasible because the algorithm involves elementary, local operations replicated over the image. >

... read more

Topics: Anisotropic diffusion (62%), Edge-preserving smoothing (60%), Smoothing (59%) ... read more

11,917 Citations


Open accessProceedings Article
Adam Paszke1, Sam Gross2, Francisco Massa2, Adam Lerer2  +17 moreInstitutions (11)
01 Jan 2019-
Abstract: Deep learning frameworks have often focused on either usability or speed, but not both. PyTorch is a machine learning library that shows that these two goals are in fact compatible: it was designed from first principles to support an imperative and Pythonic programming style that supports code as a model, makes debugging easy and is consistent with other popular scientific computing libraries, while remaining efficient and supporting hardware accelerators such as GPUs. In this paper, we detail the principles that drove the implementation of PyTorch and how they are reflected in its architecture. We emphasize that every aspect of PyTorch is a regular Python program under the full control of its user. We also explain how the careful and pragmatic implementation of the key components of its runtime enables them to work together to achieve compelling performance. We demonstrate the efficiency of individual subsystems, as well as the overall speed of PyTorch on several commonly used benchmarks.

... read more

Topics: Programming style (56%), Python (programming language) (53%), Usability (52%) ... read more

9,926 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20218